代做COMPSCI 753 Algorithms for Massive Data SEMESTER TWO 2020代做留学生Matlab编程

- 首页 >> C/C++编程

COMPUTER SCIENCE

COMPSCI 753

SEMESTER TWO 2020

Algorithms for Massive Data

1    Locality-sensitive Hashing                     [10 marks]

1.1    Computing MinHash signatures                                   [5 marks]

Given 4 sets:

S1 = {3, 4, 5}, S2 = {0, 1, 2}, S3 = {0, 5},

Q = {0, 1, 2, 3, 4, 5}.

1.  Present these sets as a binary matrix where the set elements are {0, 1, 2, 3, 4, 5}. [1 mark]

2.  Construct the MinHash signature matrix using 4 universal hash functions below.         [1 mark]

h1 (x) = x mod  6,                      h2 (x) = (x + 1)  mod  6,

h3 (x) = (x + 3)  mod  6,             h4 (x) = (x + 5)  mod  6

3.  Consider the set Q as the query set, estimate the Jaccard similarities J(S1, Q), J(S2, Q), and J(S3, Q).         [1 mark]

4.  Can we use the hash function in the form of h(x) = (x + a)  mod  6, where a is an integer to simulate random permutations for our sets? Explain you answer.           [2 marks]

1.2    Tuning parameters for LSH                                           [2 marks]

Given the number of bands b and the number of rows per band r, let p = 1 - (1 - sr )b  be the probability of being a candidate pair for the pair with Jaccard similarity s.

Given the following values of r and b: r = 3 and b = 10; r = 6 and b = 20; r = 5 and b = 50, we compute the value p for s in range {0.1, 0.2, . . . , 1} as follows:

s

(3, 10)

(6, 20)

(5, 50)

0.1

0.0100

0.0000

0.0005

0.2

0.0772

0.0013

0.0159

0.3

0.2394

0.0145

0.1145

0.4

0.4839

0.0788

0.4023

0.5

0.7369

0.2702

0.7956

0.6

0.9123

0.6154

0.9825

0.7

0.9850

0.9182

0.9999

0.8

0.9992

0.9977

1.0000

0.9

1.0000

1.0000

1.0000


We would like to solve the near neighbor search problem using the Jaccard similarity. In particular, given a query set Q, we want to find all sets Si  such that J(Si, Q) ≥ 0.5. Which settings of b and r above should we use such that:

1.  The probability that any 50%-similar pair is a candidate pair is at least 70%. Explain your solution.           [1 mark]

2.  The probability that any 50%-similar pair is a candidate pair is at least 70% and the number of candidate pairs is minimized.                [1 mark]

1.3    Linear time of LSH on nding all similar pairs          [3 marks]

Assume that the average number of words in a document is constant. Without  using the shingling technique, the running time of the na  finding all Jaccard similarity pairs is O(n2 ) where n is the number of docu- ments. In the lecture note, we state that  “With LSH, we can approximately  find all similar pairs in O(n) time.” Is the statement true or false? Explain  your answer.

2    Streaming Algorithms                            [15 marks]

2.1    Reservoir Sampling                                             [5 marks]

Fig. 1.: Illustration of how pRS1  works.

In our lecture, we have studied the reservoir sampling which samples an element from a stream of size m with the same probability. If we use the reservoir sampling with the summary size s =  1, each element of a stream will be sampled with probability 1/m. We name this method as RS1 . The generalized version of reservoir sampling with the summary size s > 1 guarantees that each element in a stream will be sampled with the same probability s/m. We name this method as RSs.



In the exam, we consider a new algorithm, called pRS1 , that simulates RSs for s > 1 by running s independent RS1  instances in parallel. pRS1  also uses a summary of size s, as shown in Figure 1.

1.  As a function of m and s, what is the probability an element of a stream is sampled by pRS1 ?          [2 marks]

2.  Let fi be the number of occurrences of the element ai  in a stream. Explain how we can use RS s  and pRS1  for estimating fi.                 [3 marks]

2.2    Misra-Gries vs. Reservoir Sampling                             [5 marks]

Run the Misra-Gries summary with k = 2 counters for the stream below: {1, 4, 5, 4, 4, 5, 4, 4}

1.  Present the final summary, including the elements and their counter values, when the execution of the algorithm is finished.   [2 marks]

2. What is the frequency of an element such that it is guaranteed that it would be in the summary.             [1 mark]

3.  If we  use the generalized reservoir  sampling  RSs  with  s  =  2 on this stream,what is the probability that the element 4 is in our RSs  summary? [2 marks]

2.3    CountMin Sketch                                                                 [5 marks]

Apply CountMin Sketch to estimate the frequency of each element in the stream below:

{1, 4, 5, 4, 4, 5, 4, 4, 1, 4, 5, 4, 4, 5, 4, 4, 1, 4, 5, 4, 4, 5, 4, 4}

Our CountMin Sketch uses d = 3 arrays with the hash functions as follows:

h1 (x) = (x + 1)  mod  3,

h2 (x) = (3x + 1)  mod  3,

h3 (x) = (5x + 2)  mod  3.



1.  Present the CountMin Sketch summary after processing all elements and the estimated frequency of each element.     [3 marks]

2.  Among Reservoir Sampling, Misra-Gries and CountMin Sketch, which  algorithm we should use to find the top-1 frequent element in this stream. Explain your choice.                       [2 marks]

3    Algorithms for Large Graphs                [15 marks]

3.1    Computing PageRank                                                     [5 marks]

Given the following raw adjacency matrix of a graph:

1.  Convert A into a column-stochastic matrix M.                          [1 mark]

2.  In  the  lecture,  we  have  shown  that  the  PageRank  r  =  M · r is  the  eigenvector of the column-stochastic M corresponding to eigenvalue λ = 1. Compute the PageRank of all nodes in the above graph using the eigen  equation.                [2 marks]

3.  From the resulting PageRank scores in question 2, explain the problem of running the power iteration algorithm r(t+1)  = M · r(t)  on M. Describe how to solve the problem. [2 marks]

3.2 Girvan-Newman                                    [5 marks]

1.  Compute the edge betweenness for  all edges in the social network in Figure 2. Which edge will be removed to partition the graph into two parts using the Girvan-Newman method?               [3 marks]

Fig. 2.: An example social network



2. In our lecture, we mentioned that we can use the Brandes’ algorithm to calculate the shortest path from a node to all others. Does the algorithm apply for a weighted graph? Explain your answer.                [2 marks]

3.3    In  uence Maximization                                                  [5 marks]

1. Compute the influence spread of the seed set S = {a} using the inde- pendent cascade model on the graph in Figure 3. Hint: Convert the stochastic graph to deterministic graphs.     [3 marks]

Fig. 3.: A social network with activation probabilities on edges.

2. In the lecture, we gave the definition of submodular function as f(S [ {v}) - f(S) ≥ f(T [ {v}) - f(T) for S C T ≤ U, where U is the set of all items. Another definition of submodular function is that f(A) + f(B) ≥ f(A [ B) + f(A ∩ B) for any two sets A, B ≤ U. Show the two definitions are equivalent.               [2 marks]

4    Recommender Systems                           [10 marks]

4.1    Collaborative Filtering                                                       [6 marks]

Given the following transactions in the form of (user, item, rating) tuples in a recommender system.

(u1, p1, 1.5), (u1, p3, 4), (u1, p5, 0.5), (u2, p2, 4), (u2, p4, 2), (u3, p1, 4.5), (u3, p4, 2.5), (u3, p5, 5), (u4, p2, 2), (u4, p3, 3.5), (u4, p4, 4), (u4, p5, 2.5)

Let the set of users be {u1, u2, u3, u4} and the set of items be {p1, p2, p3, p4, p5}.

1. Construct the user-item interaction matrix based on the above transac- tions. Use question marks to denote missing values.               [1 mark]

2. Apply the basic user-based collaborative filtering with the Pearson corre- lation coe伍cient for user u2 without considering bias. Give the top-1 rec- ommended item to u2 and the corresponding predicted rating. [2 marks]


3.  In the lecture, we discussed how to model the rating bias including the bias over all transactions, the bias of a user and the bias of an item. Give the predicted rating of user u2 to itemp5 using the collaborative filtering that incorporates the above bias information.       [3 marks]

Note: The predicted ratings should round to one decimal place.

4.2    Factorization Machine                                                        [4 marks]

Suppose you are asked to build a system to recommend events. Users {u1, u2, u3, u4} attend events from {e1, e2, e3} in groups. Events are held in one of the two stadiums s1 and s2. Table 1 shows the transactions.

Table1.: Transactions of the event recommendation system

Transaction ID

Group of users

Event

Stadium

1

u1, u2

e1

s1

2

u1, u3, u4

e2

s1

3

u2, u4

e3

s2

4

u3, u4

e1

s2

1.  Construct the input feature vectors for the factorization machine using the event transactions in Table 1.          [1 mark]

2.  Can factorization machine predict the rating that an individual user u2 may put on e2 held in s2? Explain your answer.     [1 mark]

3.  If we ignore the stadium information in the transactions and only consider users and events in the above example, does the factorization machine reduce to the latent factor model? If yes, explain your  answer. If no, explain in what situation the factorization machine reduces to the latent factor model.                            [2 marks]

 

 

 


站长地图