辅导Matlab Assignmen、辅导A Matlab program程序 辅导A Matlab program for a 3D structure

- 首页 >> Matlab编程


Assignment 1: A Matlab program for a 3D structure

Please refer the attached 2D frame program (Appendix A) with line-by-line explanations to develop a Matlab program

for a 3D Frame, whose nodal and elemental information are shown in Appendix B. The shape of three types of cross

section is given in Appendix C. The loading and boundary conditions are shown in Appendix D. Appendix E shows a

schematic of frame element in 3D, the local stiffness matrix and material properties for the 3D structure. Noted that the

gravity is not considered. In Appendix F, a sample Transmission tower is plotted and your program can be used

directly for this complex structure. In Appendix G, analysis of 3D frame in Matlab is given via two examples.

The assignment should:

1) Write in terms of https://emedia.rmit.edu.au/learninglab/content/reports-0. A sample report is in Appendix

B (10 point)

2) Introduce the theory of Finite Element Analysis for 3D frame. (10 point)

3) Plot the flow chart of the program. (10 point)

4) The structure is composed of 3 types of members. (15 point)

5) Plot the 3D Frame before deformation in a 3D view. The type of different members should be clearly seen in

the figure. (15 point)

6) List the deformation of all nodes in a table. (20 point)

7) Write your understanding in Finite Element Analysis through this program. (10 point)

8) Please submit the report, Matlab program, input files (node.txt, elem.txt and etc.). (10 point)

Please upload the assignment to the blackboard before 00:00 19 Aug 2018. Late submissions will attract a penalty of

5% per day.

APPENDIX A

Finite element analysis for a 2D Frame in Matlab

Line Code explanation

1 clc; Clear command window.

2 clear; removes all variables from the workspace.

3 close all; closes all the open figure windows.

4 % blank line

5 N = textread('node.txt'); Read x and y coordinate for the node and assign

their values to N

6 E = textread('elem.txt'); Read the near and far end for the beam and

assign

7 % blank line

8 NN = length(N); Get the number of node

9 NE = length(E); Get the number of element

10 % blank line

11 E0 = 2.1e6; Set Young’s modulus

12 A0 = 22.8; Set the area of cross section

13 I0 = 935; Set the second moment of inertia

14 % blank line

15 hold on;

holds the current plot and all axis properties so

that subsequent graphing commands add to the

existing graph.

16 for i=1:NE Begin an iteration in which i begins from 1 to NE

17 plot([N(E(i,1),1),N(E(i,2),1)],[N(E(i,1),2),N(

E(i,2),2)],'k','linewidth',2);

Plot a line starts from the near end to the far

end of an element in black with the linewidth of

2.

18

text((N(E(i,1),1)+N(E(i,2),1))/2,(N(E(i,1),2)+

N(E(i,2),2))/2,num2str(i),'color','b','fontsiz

e',12);

Plot the element number at its middle in blue

and 12 font size.

19 end End the iteration

20 % blank line

21 for i=1:NN Begin an iteration in which i begins from 1 to NN

22 if i<3 If i<3

23 plot(N(i,1),N(i,2),'rs','markersize',12,'mark

erfacecolor','r');

Plot a red square marker at the node i with the

size of 12 and red marker face color.

24 else Else

25 plot(N(i,1),N(i,2),'ko','markersize',8,'mark

erfacecolor','k');

Plot a black circle marker at the node i with the

size of 8 and black marker face color.

26 end End if

27 text(N(i,1),N(i,2),num2str(i),'color','g','font

size',12);

Plot a green node number at the node i with the

size of 12.

28 end End the iteration

29 % blank line

30 F=zeros(3*NN,1); Create the force vector and all members are

zero.

31 FN = [11 12 17 18 23 24]; Set the node number at which a load is applied

32 F(3*FN-2) = -20; The x component of the load is -20

33 F(3*FN-1) = -10; The y component of the load is -10

34 % blank line

35 scale = 20; Set the scaling factor

36 for i=1:length(FN) Begin an iteration in which i begins from 1 to the

number of loads

37 plot( N(FN(i),1),N(FN(i),2),'b*','markersize'

,10,'markerfacecolor','b');

Plot a blue star with the size of 10 and blue

marker face color at the node where a load is

applied.

38

plot([N(FN(i),1),N(FN(i),1)-

100*sin(20/180*pi)],[N(FN(i),2),N(FN(i),2)

-100*cos(20/180*pi)],'-

>r','linewidth',2,'markerfacecolor','r');

Plot red “>” symbols to show the applied load in

20 degree angle with line width of 2 and red

marker face color

39 % blank line

40 ang=-1.5*pi:0.5:-.5*pi;

41 xp=scale*cos(ang);

42 yp=scale*sin(ang);

43 plot(N(FN(i),1)+xp,N(FN(i),2)+yp,'--

r>','linewidth',2,'markerfacecolor','r');

Plot 7 red “>” symbols to show the applied

moment with line width of 2 and red marker

face color

44 end End the iteration

45 % blank line

46 title('A schematic of the power

tower','fontsize',12);

Plot the title of this figure with 12 font size

47 set(gca,'fontsize',12); Set the font size of current axis as 12

48 axis equal tight Set the axis property as “equal” and “tight”

49 print('-dtiff','-r400','frame.tif'); Print the figure in the name of “frame.tif” with

tiff format and 400 resolution

50 % blank line

51 K=zeros(3*NN,3*NN); Determine the global stiffness matrix, its size is

3NN by 3NN and all members are zero.

52 for n=1:NE Begin an iteration in which i begins from 1 to NN

53 L = sqrt((N(E(n,1),1)-N(E(n,2),1))^2 +

(N(E(n,1),2)-N(E(n,2),2))^2);

Calculate the length of element

54 lx = (N(E(n,2),1) - N(E(n,1),1))/L; Calculate cos(theta)

55 ly = (N(E(n,2),2) - N(E(n,1),2))/L; Calculate sin(theta)

56 a=A0*E0/L; Calculate some parameters for the local matrix

57 b=6*E0*I0/L^2; Calculate some parameters for the local matrix

58 c=12*E0*I0/L^3; Calculate some parameters for the local matrix

59 d=E0*I0/L; Calculate some parameters for the local matrix

60 % blank line

61 Ke = [ a 0 0 -a 0 0 Determine the local matrix at local coordinate

system

62 0 c b 0 -c b

63 0 b 4*d 0 -b 2*d

64 -a 0 0 a 0 0

65 0 -c -b 0 c -b

66 0 b 2*d 0 -b 4*d];

67 % blank line Determine the transformation matrix

68 T = [ lx ly 0 0 0 0

69 -ly lx 0 0 0 0

70 0 0 1 0 0 0

71 0 0 0 lx ly 0

72 0 0 0 -ly lx 0

73 0 0 0 0 0 1];

74 % blank line

75 Ke = T'*Ke*T; Determine the local matrix at global coordinate

system

76 i = E(n,1); Get the near end number of an element

77 j = E(n,2); Get the far end number of an element

78 dof = [3*i-2:3*i 3*j-2:3*j]; 6 degrees of the element

79 K(dof,dof) = K(dof,dof) + Ke; Assemble the global matrix from the local matrix

80 end End the iteration

81 % blank line

82 fixeddofs = [1 2 3 4 5 6]; Fixed degrees

83 alldofs = [1:3*NN]; All degrees

84 freedofs = setdiff(alldofs,fixeddofs); Get the active degrees

85 U(freedofs,:) =

K(freedofs,freedofs)\F(freedofs,:);

Calculate the equation Ax=b to get the

deformations for all active degrees.

86 U(fixeddofs,:)= 0; Make the fixed degrees equal zero

87 % blank line

88 figure; Plot a new figure

89 hold on;

holds the current plot and all axis properties so

that subsequent graphing commands add to the

existing graph.

90 ND = N + scale*[U(1:3:end) U(2:3:end)]; Plot the node after the deformation. Noted the

deformation is multiplied by the scaling factor.

91 % blank line

92 for i=1:NE Begin an iteration in which i begins from 1 to NN

93 plot([N(E(i,1),1),N(E(i,2),1)],[N(E(i,1),2),N(

E(i,2),2)],'linewidth',2,'color','k');

Plot a line starts from the near end (before

deformation) to the far end (before

deformation) of an element in black with the

line width of 2.

94 plot([ND(E(i,1),1),ND(E(i,2),1)],[ND(E(i,1),2

),ND(E(i,2),2)],'--b','linewidth',2);

Plot a line starts from the near end (after

deformation)to the far end (after deformation)

of an element in blue with the dashed line width

of 2.

95 end End the iteration

96 % blank line

97 title(['The deformation magnified '

int2str(scale) ' times'],'fontsize',12);

Plot the title of this figure with 12 font size

98 axis equal tight off Set the font size of current axis as 12

99 set(gca,'fontsize',12); Set the axis property as “equal” and “tight”

100 print('-dtiff','-r400','U_frame.tif'); Print the figure in the name of “U_frame.tif”

with tiff format and 400 resolution

APPENDIX B

Node x y z

1 -0.5 -0.3 0

2 0.5 -0.3 0

3 0.5 0.3 0

4 -0.5 0.3 0

5 -0.5 -0.3 2

6 0.5 -0.3 2

7 0.5 0.3 2

8 -0.5 0.3 2


Element

number

Element

Type

Final

Node

Initial

Node

1 1 1 5

2 1 2 6

3 1 3 7

4 1 4 8

5 2 5 6

6 2 6 7

7 2 7 8

8 2 8 5

9 3 1 6

10 3 2 7

11 3 3 8

12 3 4 5

APPENDIX C

The cross section of three elements in the shape of Equal Angles, Welded Columns, and Circular Rings

APPENDIX D

Nodal External Loads Vector Nodal External Loads Vector

Node Degrees of

Freedom External Load

5

25 Px 1000

26 Py 2000

27 Pz 3000

28 Mx 0

29 My 0

30 Mz 0

6

31 Px 1000

32 Py 2000

33 Pz 3000

34 Mx 0

35 My 0

36 Mz 0

7

37 Px 1000

38 Py 2000

39 Pz 3000

40 Mx 0

41 My 0

42 Mz 0

8

43 Px 1000

44 Py 2000

45 Pz 3000

46 Mx 0

47 My 0

48 Mz 0

Fixed Node Fixed Node xed Node

Node Degrees of

Freedom External Load

1

1 u1 0

2 v1 0

3 w1 0

4 θx1 0

5 θy1 0

6 θz1 0

2

7 u2 0

8 v2 0

9 w2 0

10 θx2 0

11 θy2 0

12 θz2 0

3

13 u3 0

14 v3 0

15 w3 0

16 θx3 0

17 θy3 0

18 θz3 0

4

19 u4 0

20 v4 0

21 w4 0

22 θx4 0

23 θy4 0

24 θz4 0

APPENDIX E:

Structural Steelwork (AS 4100-1998) pa

Young’s modulus: E=2e11 pa

Shear Modulus: 8e10 pa

APPENDIX F: Sample Transmission tower

APPENDIX G: Finite Element Analysis of 3D Frame


104 8 Analysis of 3D frames

After transformation to the global axes, the stiffness matrix in global coordinates

is obtained as

K = RT K

R

where the rotation matrix R is defined as

R =

r000

0r00

00r0

000r

(8.2)

being

r =

CXx CY x CZx

CXy CY y CZy

CXz CY z CZz

⎦ (8.3)

and

CXx = cosθXx

where angles θXx, θY x, and θZx, are measured from global axes X, Y , and Z,

with respect to the local axis x, respectively. The two-node 3D frame element has

six degrees of freedom per node. Given the nodal displacements, it is possible to

calculate the reactions at the supports by

F = KU (8.4)

where K and U are the structure stiffness matrix and the vector of nodal displacement,

respectively. The element forces are also evaluated by axes transformation as

fe = keRUe (8.5)

8.3 First 3D frame example

The first 3D frame example is illustrated in figure 8.1. We consider E = 210

GPa, G = 84 GPa, A = 2 × 10−2 m2, Iy = 10 × 10−5 m4, Iz = 20 × 10−5 m4,

J = 5 × 10−5 m4.

Code problem12.m solves this problem, and calls function formStiffness3D

frame.m, that computes the stiffness matrix of the 3D frame element.

%................................................................

% MATLAB codes for Finite Element Analysis

% problem12.m

% antonio ferreira 2008

8.3 First 3D frame example 105

1

2 3

4

10kN 15kN

4m

x 3m 3m

y

z

Fig. 8.1 A 3D frame example (problem12.m)

% clear memory

clear all

% E; modulus of elasticity

% I: second moment of area

% L: length of bar

E=210e6; A=0.02;

Iy=10e-5; Iz=20e-5; J=5e-5; G=84e6;

% generation of coordinates and connectivities

nodeCoordinates=[0 0 0; 3 0 0; 0 0 -3; 0 -4 0];

xx=nodeCoordinates(:,1);

yy=nodeCoordinates(:,2);

zz=nodeCoordinates(:,3);

elementNodes=[1 2;1 3;1 4];

numberNodes=size(nodeCoordinates,1);

numberElements=size(elementNodes,1);

% for structure:

% displacements: displacement vector

% force : force vector

% stiffness: stiffness matrix

% GDof: global number of degrees of freedom

GDof=6*numberNodes;

U=zeros(GDof,1);

force=zeros(GDof,1);

stiffness=zeros(GDof,GDof);

106 8 Analysis of 3D frames

%force vector

force(1)=-10;

force(3)=20;

% stiffness matrix

[stiffness]=...

formStiffness3Dframe(GDof,numberElements,...

elementNodes,numberNodes,nodeCoordinates,E,A,Iz,Iy,G,J);

% boundary conditions and solution

prescribedDof=[7:24];

% solution

displacements=solution(GDof,prescribedDof,stiffness,force)

% displacements

disp(’Displacements’)

jj=1:GDof; format long

f=[jj; displacements’];

fprintf(’node U\n’)

fprintf(’%3d %12.8f\n’,f)

Listing of formStiffness3Dframe.m:

function [stiffness]=...

formStiffness3Dframe(GDof,numberElements,...

elementNodes,numberNodes,nodeCoordinates,E,A,Iz,Iy,G,J);

stiffness=zeros(GDof);

% computation of the system stiffness matrix

for e=1:numberElements;

% elementDof: element degrees of freedom (Dof)

indice=elementNodes(e,:) ;

elementDof=[6*indice(1)-5 6*indice(1)-4 6*indice(1)-3 ...

6*indice(1)-2 6*indice(1)-1 6*indice(1)...

6*indice(2)-5 6*indice(2)-4 6*indice(2)-3 ...

6*indice(2)-2 6*indice(2)-1 6*indice(2)] ;

x1=nodeCoordinates(indice(1),1);

y1=nodeCoordinates(indice(1),2);

z1=nodeCoordinates(indice(1),3);

x2=nodeCoordinates(indice(2),1);

8.3 First 3D frame example 107

y2=nodeCoordinates(indice(2),2);

z2=nodeCoordinates(indice(2),3);

L = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) +...

(z2-z1)*(z2-z1));

k1 = E*A/L;

k2 = 12*E*Iz/(L*L*L);

k3 = 6*E*Iz/(L*L);

k4 = 4*E*Iz/L;

k5 = 2*E*Iz/L;

k6 = 12*E*Iy/(L*L*L);

k7 = 6*E*Iy/(L*L);

k8 = 4*E*Iy/L;

k9 = 2*E*Iy/L;

k10 = G*J/L;

a=[k1 0 0; 0 k2 0; 0 0 k6];

b=[ 0 0 0;0 0 k3; 0 -k7 0];

c=[k10 0 0;0 k8 0; 0 0 k4];

d=[-k10 0 0;0 k9 0;0 0 k5];

k = [a b -a b;b’ c b d; (-a)’ b’ a -b;b’ d’ (-b)’ c];

if x1 == x2 & y1 == y2

if z2 > z1

Lambda = [0 0 1 ; 0 1 0 ; -1 0 0];

else

Lambda = [0 0 -1 ; 0 1 0 ; 1 0 0];

end

else

CXx = (x2-x1)/L;

CYx = (y2-y1)/L;

CZx = (z2-z1)/L;

D = sqrt(CXx*CXx + CYx*CYx);

CXy = -CYx/D;

CYy = CXx/D;

CZy = 0;

CXz = -CXx*CZx/D;

CYz = -CYx*CZx/D;

CZz = D;

Lambda = [CXx CYx CZx ;CXy CYy CZy ;CXz CYz CZz];

end

108 8 Analysis of 3D frames

R = [Lambda zeros(3,9); zeros(3) Lambda zeros(3,6);

zeros(3,6) Lambda zeros(3);zeros(3,9) Lambda];

stiffness(elementDof,elementDof)=...

stiffness(elementDof,elementDof)+R’*k*R;

end

Results are listed as follows.

Displacements

node U

1 -0.00000705

2 -0.00000007

3 0.00001418

4 0.00000145

5 0.00000175

6 0.00000114

7 0.00000000

8 0.00000000

9 0.00000000

10 0.00000000

11 0.00000000

12 0.00000000

13 0.00000000

14 0.00000000

15 0.00000000

16 0.00000000

17 0.00000000

18 0.00000000

19 0.00000000

20 0.00000000

21 0.00000000

22 0.00000000

23 0.00000000

24 0.00000000

8.4 Second 3D frame example

The next 3D problem is illustrated in figure 8.2 and considers E = 210 GPa, G =

84 GPa, A = 2×10−2 m2, Iy = 10×10−5 m4, Iz = 20×10−5 m4, J = 5×10−5 m4.

The MATLAB code for this problem is problem13.m.

8.4 Second 3D frame example 109

1

3

4

2

15kN

5m

x 4m 4m

y

z

Fig. 8.2 A second 3D frame example (problem13.m)

%................................................................

% MATLAB codes for Finite Element Analysis

% problem13.m

% antonio ferreira 2008

% clear memory

clear all

% E; modulus of elasticity

% I: second moments of area

% J: polar moment of inertia

% G: shear modulus

% L: length of bar

E=210e6; A=0.02;

Iy=10e-5; Iz=20e-5; J=5e-5; G=84e6;

% generation of coordinates and connectivities

nodeCoordinates=[0 0 0;

0 0 4;

4 0 4;

4 0 0;

0 5 0;

0 5 4;

110 8 Analysis of 3D frames

4 5 4;

4 5 0;

];

xx=nodeCoordinates(:,1);

yy=nodeCoordinates(:,2);

zz=nodeCoordinates(:,3);

elementNodes=[1 5;2 6;3 7; 4 8; 5 6; 6 7; 7 8; 8 5];

numberNodes=size(nodeCoordinates,1);

numberElements=size(elementNodes,1);

% for structure:

% displacements: displacement vector

% force : force vector

% stiffness: stiffness matrix

% GDof: global number of degrees of freedom

GDof=6*numberNodes;

U=zeros(GDof,1);

force=zeros(GDof,1);

stiffness=zeros(GDof);

%force vector

force(37)=-15;

% calculation of the system stiffness matrix

% and force vector

% stiffness matrix

[stiffness]=...

formStiffness3Dframe(GDof,numberElements,...

elementNodes,numberNodes,nodeCoordinates,E,A,Iz,Iy,G,J);

% boundary conditions and solution

prescribedDof=[1:24];

% solution

displacements=solution(GDof,prescribedDof,stiffness,force);

% displacements

disp(’Displacements’)

jj=1:GDof; format long

f=[jj; displacements’];

fprintf(’node U\n’)

fprintf(’%3d %12.8f\n’,f)

8.4 Second 3D frame example 111

%drawing mesh and deformed shape

U=displacements;

clf

drawingMesh(nodeCoordinates+500*[U(1:6:6*numberNodes)...

U(2:6:6*numberNodes) U(3:6:6*numberNodes)],...

elementNodes,’L2’,’k.-’);

drawingMesh(nodeCoordinates,elementNodes,’L2’,’k--’);

Results are obtained as:


站长地图