代写EC202 Microeconomics 2 November Examinations 2019/20代写留学生Matlab语言

- 首页 >> Matlab编程

EC202 – Course test

Microeconomics 2

November Examinations 2019/20

1. Consider lottery A which offers you the chance to win £1,000,000 with probability 0.0001

and get zero otherwise, and lottery B which offers you the chance to win £1,000,000 with

probability 0.001 and get zero otherwise. An axiom of the expected utility hypothesis implies that the person prefers lottery B to lottery A. Which axiom is this? (4 marks)

A.  Completeness B.  Transitivity

C.  Monotonicity D.  Independence E.  Continuity

2. Consider a lottery X which consists of prizes denoted in £ sterling.  Let a person’s expected utility for lottery X be equal to U (X). Assume C is the certain amount (in sterling) which  satisfies the following equality: u(C) = U (X).  That is, the utility of C is equal to the

expected utility of the lottery.  Assuming the person is risk averse, which statement must hold? (4 marks)

A.  C > E(X)

B.  C = E(X)

C.  U (X) = C

D.  C − E(X) < 0

E.  E(X) − C < 0

93.68% got this right.

3. Consider the following game:

1 2

A

B

C

X

5,2

3,4

8,4

Y

6,2

2,3

8,8

Z

1,1

0,1

9,2

Which statement is true? (6 marks)

A.  There are two pure-strategy Nash equilibria of this game –  (X, B) and (Z, C) – both of which are Pareto efficient

B.  There are no pure-strategy Nash equilibria of this game

C.  There are two pure-strategy Nash equilibria of this game –  (X, B) and (Z, C) – but neither of them are Pareto efficient

D.  There are two pure-strategy Nash equilibria of this game –  (X, B) and (Z, C) – but only the latter (Z, C) is Pareto efficient

E.  There are two pure-strategy Nash equilibria of this game –  (X, B) and (Z, C) – but only the former (X, B) is Pareto efficient

4. Consider the following game:

Bird, Cat

L

R

U

2,2

0,10

D

5,0

-20,-5

How many Nash equilibria are there in this game? (5 marks)

A.  1 B.  2 C.  3 D.  4 E.  5

5. Consider the following game:

How many proper subgames are there in this game? (5 marks)

A.  0 B.  1 C.  2

D.  We can’t be sure. E.  Either 1 or 2.

6. Consider the following game:

1 2

X

Y

A

5,6

0,0

B

8,2

2,2

Suppose this game is played T times. Which statement is true? (6 marks)

A.  The number of information sets belonging to Player 1 is equal to the number of subgames

B.  The total number of information sets is equal to the number of subgames

C.  The total number of information sets is less than the number of subgames

D.  The number of information sets belonging to Player 1 exceeds the number of subgames

E.  There are no proper subgames

7. Consider the following game:

1,2 L M R

U C D

8,8

0,9

0,0

9,0

0,0

3,1

0,0

1,3

3,3

Suppose the game is played T times.  How many subgames are there? (6 marks)

A.  (T − 1)T 1  + 1

B.  10T 1

C. 9T1 8

D.  9T 1  + T 1

E.  (9T 1 + 1)T 1

8. Suppose s ∈ ×Si  is an outcome of a strategic game with n players, where Si  is the set of actions available to player i, with i = 1, .., n. Which statement correctly describes the set of  Pareto efficient outcomes? (6 marks)

A.  Outcome s ×Si   is Pareto efficient if there does not exist some s(˜) ×Si  such that ui (s(˜)) ui (s) for every i

B.  Outcome s ×Si   is Pareto efficient if there does not exist some s(˜) ×Si  such that ui (s(˜)) ui (s) for every i, with strict inequality for some i

C.  Outcome s ×Si   is Pareto efficient if there does not exist some s(˜) ×Si  such that ui (s(˜)) ui (s) for every i, with strict inequality for some i

D.  Outcome s ∈ ×Si   is Pareto efficient if there does not exist some s(˜) ∈ ×Si  such that ui (s(˜)) > ui (s) for every i

E.  Outcome s ×Si  is Pareto efficient if there exists some s(˜) ×Si  such that ui (s(˜)) ui (s) for every i, with strict inequality for some i

9. Suppose we have a symmetric zero-sum game with two players called Player 1 and Player 2. Which statement is true of the outcome/equilibrium of the game? (6 marks)

A.  Either  Player  1 wins and Player 2 loses or Player 1 loses and Player 2 wins

B.  Each  player’s ex-post payoff is less than or equal to zero under any outcome

C.  Any outcome of the game is  Pareto efficient

D.  Each  player’s ex-post payoff is less than or equal to zero in Nash equilibrium

E.  None of the above

10. Consider the following “war of attrition” game, which is played over discrete periods of time. Player 1 and Player 2 can play Stop (S) or Continue (C). We can represent the game in normal form as follows:

1, 2      S         C

S         0,0      0,10

C         10,0      -1,-1

The length of the game depends on the players’ behaviour. Specifically, if one or both players

select S in a period, then the game ends at the end of this period.  Otherwise, the game continues into the next period. Suppose the players discount payoffs between periods

according to the discount factor δ ∈ [0, 1). Which statement is true? (6 marks)

A.  There is a subgame perfect Nash equilibrium in which both players play S in the first period

B.  There is a unique subgame perfect Nash equilibrium in which Player 1 plays C and Player 2 plays S in period 1

C.  There is a subgame perfect Nash equilibrium in which Player 1 plays S and Player 2 plays C in period 1

D.  There is a subgame perfect Nash equilibrium in which both players play C in period 1   E.  There is a unique subgame perfect Nash equilibrium in which both players mix between

each pure strategy with probabilities (11/1 , 11/10), where the rst entry is the probability attached to S, in every period.

11. Consider the following simultaneous-move three-player game:

Player 3

A B

Player 1, Player 2

L

R

L

R

U

2,2, 0

5,5, 5

4,4, 1

4,2, 8

D

8,6, 8

0,7, 4

0,2, 9

4,2, 5

The three players make their choices simultaneously and independently. The sets of actions available to Player 1, Player 2 and Player 3, respectibely, are S1  = {U, D}, S2  = {L, R} and S3  = {A, B}. The payoffs are listed in the table above where the first entry refers to the

payoff to Player 1, the second to Player 2 and the third to Player 3. A profile of actions is

written (x,y, z) where the first entry is the action of Player 1, the second entry is the action of Player 2 and the third entry is the action of Player 3. What is the set of pure-strategy

Nash equilibria of this game? (6 marks)

A.  {(U, R, A) , (U, R, B) , (D, R, B)}

B.  {(D, R, B) , (U, L, B)}

C.  {(U, R, A) , (D, L, A) , (U, L, B) , (D, R, B)} D.  {(U, R, A) , (U, L, B) , (D, L, B)}

E.  {(U, R, A) , (U, L, B) , (D, R, B)}

12. Consider the following two-player game:

The payoffs in the extensive form above are denominated in VNM utilities.  Player 1 moves first and can play L or R.  If Player 1 plays L,  Player 1 and Player 2 will play the

simultaneous-move game with actions S1  = S2  = {H, T}.  If Player  1 plays R, Player 1 and   Player 2 will play the simultaneous-move game with actions S1  = S2  = {C, D}.  An outcome of the game is written  [X, (YY, , ZZ, )], where X is Player 1’s strategy at the beginning of

the game, YY,  is Player 1’s strategy in the second stage of the game (Y is their action in the simultaneous-move game on the left, and Y,  is their action in the simultaneous-move game on the right), ZZ,  is Player 2’s strategy in the second stage of the game (Z is their action in the simultaneous-move game on the left, and Z,  is their action in the simultaneous-move game on the right).  How many subgame perfect Nash equilibria are there in this game? (6 marks)

A.  1 B.  2 C.  3 D.  4 E.  5

13. Suppose we are given a stage game G with a unique Nash equilibrium.  The game has a set of L = {1, .., n} players, and a set of actions S1  through Sn  and a profile of outcomes s1 through sn , with payoffs u1 (s1, .., sn ) through un (s1, .., sn ). The game is played T periods, with the outcome of all preceeding plays observed before the next play begins. The payoff   from the repeated game G(T) is the sum of the payoffs from the T stage games.  It is assumed that T is finite. Which statement is true? (6 marks)

A.  It is  possible that there exists subgame perfect Nash equilibria of the game in which, for any t < T , the outcome in stage t is not a Nash equilibrium of the stage game.

B.  It is not guaranteed that the repeated game has a unique subgame perfect  Nash equilibrium

C.  There is a unique subgame perfect Nash equilibrium in which the Nash equilibrium of the stage game G is played in every stage

D.  It is not guaranteed that there exists a subgame perfect  Nash equilibrium of the repeated game

E.  There is a subgame perfect Nash equilibrium in which the Nash equilibrium of the stage game G is played in every stage but this equilibrium is not necessarily unique



站长地图