代写EC202 Microeconomics 2 March Examinations 2020/21代做Python语言

- 首页 >> Matlab编程

EC202 – Course test

Microeconomics 2

March Examinations 2020/21

1.  Consider lottery A and lottery B . An axiom of the expected utility hypothesis implies that an individual prefers lottery A to lottery B, or lottery B to lottery A, or that the individual is

indifferent between the two. Which axiom is this?   (6 marks)

A.  Completeness. B.  Transitivity.

C.  Monotonicity.  D.  Independence. E.  Continuity.

2.  Consider the following utility function:

where γ ∈ (0, 1), a > 0, b > 0 and X  is wealth. Which statement is true?   (6 marks)

A.  The coefficient of relative risk aversion is constant.

B.  The coefficient of relative risk aversion is increasing in X . 

C.  The coefficient of absolute risk aversion is increasing in X . 

D.  The utility function represents risk-loving preferences.

E.  The utility function can represent both risk averse and risk loving preferences.

3.  Consider a game with two players, L = {1, 2}, with actions S1  = S2  =

{Bear, Ninja, Warrior, Hunter}. The Bear (B) beats Ninja (N), Ninja beats Warrior (W),

Warrior beats Hunter (H), Hunters beats Bear, Bear ties with Warrior, Ninja ties with Hunter, and every action ties with itself. A win gives a player a payoff equal to 1, lose gives -1, and a tie gives a payoff equal to 0. The normal-form representation takes the following form.

Table 1:  Normal form representation of Bear, Ninja, Warrior, Hunter

1,2

B

N

W

H

B

0 , 0

1 ,-1

0 , 0

-1 , 1

N

-1 , 1

0 , 0

1 ,-1

0 , 0

W

0 , 0

-1 , 1

0 , 0

1 ,-1

H

1 ,-1

0 , 0

-1 , 1

0 , 0

Which of the following statements is true?   (8 marks)

A.  There is a unique Nash equilibrium in which each player mixes between all actions with equal probability.

B.  There is no Nash equilibrium of this game.

C.  There are infinitely many Nash equilibria.

D.  We cannot say whether there is a Nash equilibrium or Nash equilibria.

E.  There are only pure-strategy Nash equilibria of this game.

4.  Consider the following game:

1 2

L

M

R

U

6 , 4

2 , 5

1 , 1

M

6 , 8

8 , 8

5 , 8

D

5 , 5

7 ,10

9 , 9

Which statement is true?   (6 marks)

A.  There are two pure-strategy Nash equilibria of this game –  (M, L) and (M, M) – but only the latter is Pareto efficient.

B.  There is only one pure-strategy Nash equilibrium – (M, M) — but this is not  Pareto efficient.

C.  There are two pure-strategy Nash equilibria of this game –  (M, L) and (M, M) – both of which are Pareto efficient.

D.  The only Pareto efficient outcome of the game is  (D, R).

E.  There are two pure-strategy Nash equilibria of this game –  (M, L) and (M, M) – neither of which are Pareto efficient.

5.  Consider the following game:

1, 2

L

R

U M D

5,4

3,0

9,0

0,0

2,4

1,0

How many Nash equilibria are there in this game?   (6 marks)

A.  1. B.  2. C.  3. D.  4.

E.  Infinitely many.

6.  Consider the following game:

Which statement is true?   (8 marks)

A.  The total number of information sets is equal to the number of subgames.

B.  The total number of information sets is equal to the number of proper subgames.

C.  The number of information sets belonging to Player 1 is equal to the number of subgames.

D.  There are two subgames of this game and one proper subgame.

E.  The number of information sets belonging to Player 2 exceeds the number of subgames.

7.  Consider the following game:

1 2

L

R

U

3,3

1,1

D

4,2

2,2

Suppose this game is played twice, and both players do not discount payoffs in the second period. Which statement is true?   (8 marks)

A.  The number of proper subgames exceeds the total number of information sets.

B.  The number of proper subgames is equal to the total number of information sets. C.  Action L is a weakly dominated strategy.

D.  Any outcome of the two-period game which is a subgame perfect  Nash equilibrium must be consistent with outcomes that are Nash equilibria in the stage games.

E.  There is a subgame perfect Nash equilibrium in which  (U, L) is played in the first period and (D, L) is played in the second period.

8.  Consider the following game:

1, 2     L      M       R

U       8,8    0,9    0,0

D       9,0    0,0    3,1

Suppose the game is played T times.  How many subgames are there?   (8 marks)

A.  (T - 1)T 1 + 1.

B.  6/6T-1.

C.  (6T 1 + 1)T 1 .

D.  6T 1 + T - 1.

E.  6T1   5     .

9.  Consider the following “war of attrition” game, which is played over discrete periods of time. Player 1 and Player 2 can play Stop (S) or Continue (C). We can represent the game in normal form as follows:

1, 2            S            C

S             0,0          0,20

C           20,0        -10,-10

The length of the game depends on the players’ behaviour. Specifically, if one or both players select S in a period, then the game ends at the end of this period.  Otherwise, the game continues into the next period. Suppose the players discount payoffs between periods according to the discount factor δ ∈ (0, 1). What is the probability that the game will be played exactly two times if the players play the mixed-strategy Nash equilibrium?   (8 marks)

A.  20   81 .

B.  1   4 .

C.  24   99 .

D.  4   9 .

E.   19    105 .

10.  Consider the following simultaneous-move three-player game:

                                                         Player 3

 

A                      B

Player 1, Player 2

L

R

L

R

U

1,2, 2

4,4, 9

-1,-6, 6

7,5, 9

D

5,5, 6

1,5, 6

5,5, 4

5,5, 5

The three players make their choices simultaneously and independently. The sets of actions available to Player 1, Player 2 and Player 3, respectively, are S1  = {U, D}, S2  = {L, R} and S3 = {A, B}. The payoffs are listed in the table above where the first entry refers to the payoff to Player 1, the second to Player 2 and the third to Player 3. A profile of actions is written (x,y, z) where the first entry is the action of Player 1, the second entry is the action of Player 2 and the third entry is the action of Player 3. What is the set of pure-strategy Nash equilibria of this game?   (6 marks)

A.  {(D, L, A) , (U, R, A) , (U, R, B)}.

B.  {(D, L, A) , (U, R, A)}.

C.  {(U, R, A) , (U, R, B) , (U, L, B) , (D, R, B)}.

D.  {(D, R, A) , (U, R, A) , (D, R, B)}.

E.  {(U, R, A) , (D, L, B) , (D, R, B)}.

11.  Consider the following two-player game:

The payoffs in the extensive form above are denominated in VNM utilities.  Player 1 moves first and can play L or R.  If Player 1 plays L,  Player 1 and Player 2 will play the simultaneous-move game with actions S1  = S2  = {H, T}.  If Player  1 plays R, Player 1 and Player 2 will play a sequential-move game with Player 2 choosing from the set of actions S2,  = {C, D}, followed by Player 1 selecting from S1,  = {C, D}. The payoffs to each player is indicated at the bottom of the game tree with Player 1’s payoffs being the first entry.  How many subgame perfect Nash equilibria are there in this game?   (6 marks)

A.  1. B.  2. C.  3. D.  4. E.  5.

12.  Consider the following prisoner’s dilemma:

1, 2           C           D

C              0,0        -2,1

D             1,-2        -1,-1

Suppose Player 1 and Player 2 discount the future by δ ∈ [0, 1).  For which values of the discount factor δ will the players be able to sustain cooperation if the game is repeated infinitely many times and the players play grim-trigger strategies?   (6 marks)

A.  δ ∈ [3/1, 1)

B.  δ ∈ [4/1, 1)

C.  δ ∈ [8/1, 1)

D.  δ ∈ [2/1, 1)

E.  δ ∈ [10/1, 1)

13.  Consider the following game of chicken:

1, 2          S           GS

S            0,0          -2,2

GS         4,-4          -10,-10

Suppose an ‘umpire’ proposes the following mechanism:  a random device selects one cell in the game matrix with the following probabilities:

(1, 2)

S    GS

S

1

3

1

3

GS

1

3

0

When a cell is selected, each player is told by the ‘umpire’ to play corresponding to pure

strategy.  Each Player is told what to play but not what the other player is told although the probability distribution is common knowledge. Which statement is true?   (6 marks)

A.  The mechanism proposed by the ‘umpire’ cannot be supported in a correlated equilibrium because Player 1 has a unilateral incentive to deviate.

B.  The mechanism proposed by the ‘umpire’ cannot be supported in a correlated equilibrium because Player 2 has a unilateral incentive to deviate.

C.  The mechanism proposed by the ‘umpire’ cannot be supported in a correlated

equilibrium because both Player 1 and Player 2 each have a unilateral incentive to deviate.

D.  The mechanism proposed by the ‘umpire’ can be supported in a correlated equilibrium and the expected payoff to either player in the correlated equilibrium exceeds their expected payoff in the mixed strategy Nash equilibrium.

E.  The mechanism proposed by the ‘umpire’ can be supported in a correlated equilibrium. Player 1 gets a higher expected payoff in the correlated equilibrium than in the mixed strategy Nash equilibrium but Player 2 gets a higher expected payoff in the mixed-strategy Nash equilibrium than in the correlated equilibrium.

14.  Consider an individual facing the following gamble.  With probability ρ = 0.2 they will end up in a “bad state” and consume xb  =£0 and with probability 1 − ρ = 0.8 they will consume      xg  =£10, 000 in a “good state”.  The individual’s utility can be represented as u(xi ) = xi ,   where i = b,g.  Suppose there is an insurance contract available to the individual offering K units of insurance for a premium of 5/2K. How much insurance will the individual buy? (6 marks)

A.  3/15000.

B.  4/15000.

C.  5/15000.

D.  6/15000.

E.  7/15000.

15.  Consider a game in which, simultaneously, Player 1 selects x ∈ {1, 2, 3} and  Player 2 selects y ∈ {0, 1}.  The payoffs are given as:

u1 (x, y) = 2x − x2 + 2xy;

u2 (x, y) = 10y − 2xy − y2 .

Which of the following statements is true?   (6 marks)

A.  There is a unique pure-strategy Nash equilibrium in which Player  1 selects x = 2 and in which Player 2 selects y = 1.

B.  There is a pure-strategy Nash equilibrium in which Player  1 selects x = 2 and in which Player 2 selects y = 1 but this equilibrium is not unique.

C.  There is a pure-strategy Nash equilibrium in which Player  1 selects x = 2 and in which Player 2 selects y = 1 and there is a mixed strategy Nash equilibrium in which each player selects each action with equal probability.

D.  There is no pure strategy Nash equilibrium.

E.  There is a unique mixed strategy Nash equilibrium in which each player selects each action with equal probability.

 


站长地图