代写Mechatronics Individual Coursework Project代写Matlab语言

- 首页 >> Web

Module Instructors

You are a design engineer working for a firm that specialises  in  developing high-precision dispensation systems for delivering fluid solutions for medical devices. Your manager has sent you a parametric model of a single-axis syringe pump that was developed on a previous project. The mechanism can move the syringe plunger relative to its body by rotating a lead screw mechanism attached a runner.

Brief

Your manager has asked you to design a new electromechanical actuation system composed of a geared DC motor that drives the leadscrew runner of the syringe pump shown in Figure  1 . She provided CAD components and Simulink  starter models for the assembly, n.b. these files can  be  downloaded  from  the  KEATS  module  page   in   the  MATLAB  project   archive, syringe_pump.mlproj. She has also sent you a list of requirements that she has discussed with the customer appended to the end of this document. The client is particularly interested in obtaining an accurate and continuous flow from the syringe. Your manager encourages you to use the model as a starting point and welcomes further input on how to improve the mechanical design.

You are responsible for:

•   specifying DC motor, power supply, and gearbox characteristics

•   design a digital motor controller

•   demonstrate the effectiveness of your design.

You are highly encouraged to brainstorm additional information about the context in which this mechanical system is to be used.

Deliverables

•   a 3-minute video recording in which you present the motor and mechanism design to  an engineering design team. The video should contain an animation of the mechanism and an overview of the Simulink model and results.

•   a 1-page written report presenting the results of your design analysis with a maximum of 2 page of supporting figures in appendix

•   a zipped folder where the project model and data can be shared with assessors.

Figure 1: Syringe pump syringe_pump_start.slx

Learning objectives

•   Model the electromechanical system that actuates the gantry using a combination of mathematical, physical and data-driven methods and critique the choice of your modelling approach

•    Specify component parameters based on a design analysis of system requirements

•   Implement and tune a feedback controller to control position and speed of the mechanism

•   Test the controller design against multiple loading scenarios

•   Conduct a design space study to optimise system-level performance

•   Report and justify recommended design implementation

Additional resources

You are encouraged to complete laboratory exercises of weeks 22-26 to develop skills in modelling and control of mechatronics systems.

Marking Criteria

Individual coursework submission accounts for 30% of module grade.

Your submission will be scored with regards to its merits in six core areas:

Area

Actions

Science &

Mathematics (20 marks)

Justify modelling and control design approach

Interpret design performance using mathematical  and statistical  techniques Critique choice for actuator and sensor characteristics and technology

Engineering Analysis

(20 marks)

Apply engineering tools to solve the  design task

Conduct critical analysis to identify, classify and describe system performance compared to benchmark

Adopt systems approach to improve on design

Extract and evaluate pertinent data to solve unfamiliar problems

Engineering Design

(20 marks)

Evaluate  user needs and requirements Identify and work with design constraints and unknowns Communicate to a technical audience Deliver efficient, effective and robust design

Engineering Context

(10 marks)

Identify and mitigate  areas of risk

Engineering Practice

(20 marks)

Demonstrate design effectiveness in the context in which the system is applied

Additional

General skills (10 marks)

Demonstrate effectiveness, clarity and originality of communication

Requirements

Your manager discussed these requirements with the customer. You are welcome to add you own requirements to this initial draft and clarify requirements with the module convenor.

Battery / Power Supply Requirements

Use 18650 Li-Ion batteries (example) Battery Voltage: 3.7Vper battery*

Battery Capacity: 2.6 Ah

Battery Resistance: 250 mΩ per battery Battery Lifespan: 60-120 minutes

*n.b. 1 battery is 3.7V (1S), 2 batteries is 7.4V (2S), 3 batteries is  11.1V (3S) and so on.

DC Motor Requirements

Stall current: 0.2A-1A

Stall torque: 500 g.cm

No-load speed: 20-70 rpm

Dead zone torque: 20 g.cm**

**n.b. motor torque must be higher than the dead zone torque for the motor to spin.

Motor Sensor Requirements

Hall Sensor Encoder with 94 counts per revolution

Syringe Pump Requirements

Lead screw 7 - 10 mm / rev

Delivered flowrate 1-8 mL / min*** Linear travel force 100 g

Syringe linear travel rate 100 mm / min

Syringe radius 10-25 mm

Syringe length 250 mm

Specific gravity of fluid: 1-2

***n.b. the client is interested in delivering  aslow as possible continuous flowrate. You can adjust the diameter of the syringe.

Safety Requirements

Fail safe mechanisms for operation and calibration

System Response Requirements

Rise time < 3-5 s per 10 mm travel

Settling time < 5-7 s per 10 mm travel

Overshoot < 1% Undershoot < 2%

Steady-state error < 2%

Tracking Response Requirements

Relative error < 1% Absolute error < 1%





站长地图