代写ECE5550: Applied Kalman Filtering PARTICLE FILTERS代做留学生Matlab程序

- 首页 >> Web

ECE5550: Applied Kalman Filtering

PARTICLE FILTERS

7.1: Numeric integration to solve Bayesian recursion

Recall from Chap. 4 that the optimal Bayesian recursion is to:

Compute the pdf for predicting xk given all past observations

Update the pdf for estimating xk given all observations via

If we knew how to compute these pdfs, then we could find any desired estimator; e.g., mean, median, mode, whatever.

So far, we have assumed that computing these pdfs is intractable, so have made approximations to arrive at the KF, EKF, and SPKF.

We now revisit this assumption.

Numeric integration

The prediction step requires evaluating an integral.

Normalization of f (xk Zk ) via its denominator requires an integral

If state dimension n is large (e.g., n 3), evaluation of these multi-  dimensional integrals may be impractical, even with modern CPUs.

Computation needed for a given precision scales exponentially with n. The particle filter will explore some clever ways to avoid this issue.  But, first, we look at numeric integration for low-order problems.

Suppose that we wish to evaluate the definite integral

The rectangular rule approximates g(x) as piecewise constant.

Let Nr be the number of constant regions.

Then, the width of each region is w     (xmax xmin)/Nr , and the integral can be approximated as

The trapezoidal rule approximates the function as piecewise linear.

The integral approximation is integral

Application to Bayesian inference

Can write prediction step as

If we can compute this integral for every value of xk , can directly estimate posterior distribution f (xk Zk ).

Limiting factor is precision vs. speed: Each integral requires O(Nr )

calculations at each of Nr evaluation points, or O(Nr(2)) operations.

TRACKING EXAMPLE: We wish to track time-varying xk for model

xk+1 = αxk + wk

zk = 0.1xk 3 + vk

where wk ~ N(0,σw(2)) and vk  ~ N(0,σv(2)) are mutually uncorrelated and IID.

For the prediction step, we numerically integrate to approximate

For the time-update step, we directly compute

Note that the process model gives us

f (xk | xk-1) ~ N(αxk-1, σ2w)

and the measurement model gives us

f (zk | xk) ~ N (0.1xk 3 , σv 2 ).

For this example, let σw        0.2, σv       0.1, α     0.99, and x0        N(0,σw(2)).

Note that f (x0     Z0) needs to be specified, where

Since Z  1  is unknown, we assume f (x0     Z  1) f (x0)    N(0,σw(2)).

Simulation run for 200 samples, range of integration from    3 to 3 with Nr 500 regions.

If we are able to find/approximate f (xk Zk ), we can compute mean, median, mode, whatever.

Can plot these point estimates as functions of time.

Alternately, can plot the sequence of distributions as a pseudo- color image (black is low probability; white is high probability).

% Code originally based on Angle TrackingExample.m by James McNames

% of Portland State University

clear; close all;

% Define User-Specified Parameters

nSamples                 = 201;

xMin                      = -3;

xMax                      =  3;

measurementNoiseSigma = 0 .1;  processNoiseSigma     = 0 .2;  nRegions                 = 500;  alpha                  = 0 .99;

% Create Sequence of Observations from Model

x = zeros (nSamples+1,1); % time [0 . .nSamples]

z = zeros (nSamples  ,1); % time [0 . .nSamples-1]

x (1) = randn (1)*processNoiseSigma; % initialize x{0} ~ N(0,sigmaw^2)

for k=1:nSamples

x (k+1) = alpha*x (k) + randn (1)*processNoiseSigma;

z (k  ) = 0 .1*x (k)^3 + randn (1)*measurementNoiseSigma;

end

x = x (1:nSamples); % constrain to [0 . .nSamples-1]

% Recursively Estimate the Marginal Posterior

xIntegration = linspace (xMin,xMax,nRegions) . ';

width = mean (diff (xIntegration));

posteriorFiltered

= zeros (nRegions,nSamples);

posteriorPredicted

= zeros (nRegions,1);

xHatMedian

= zeros (nSamples,1);

xLower

= zeros (nSamples,1);

xUpper

= zeros (nSamples,1);

% initialize pdf for f(x{0})

prior = normpdf (xIntegration,0,processNoiseSigma);

% compute f(z{0} |x{0}) *f(x{0} |Z{-1}) = f(z{0} |x{0}) *f(x{0})

posteriorFiltered(:,1) = normpdf (z (1),0 .1*xIntegration .^3, . . .

measurementNoiseSigma) .*prior;

% compute f(x{0} |Z{0})=f(z{0} |x{0}) *f(x{0} |Z{-1})/[normalizing cst]

posteriorFiltered(:,1) = posteriorFiltered(:,1)/trapz (xIntegration, . . .

posteriorFiltered(:,1));

for k=2:nSamples

for cRegion=1:nRegions % find f(x{k}=x{i} |x{k-1}) for each x{i}

% compute f(x{k} |x{k-1})

prior = normpdf (xIntegration (cRegion),alpha*xIntegration, . . .

processNoiseSigma);

% compute f(x{k} |Z{k-1})=integral[ f(x{k} |x{k-1}) *f(x{k-1} |Z{k-1}) ]

posteriorPredicted(cRegion) = trapz (xIntegration, . . .

prior .*posteriorFiltered(:,k-1));

end

% compute f(z{k} |x{k})

likelihood = normpdf (z (k),0 .1*xIntegration .^3,measurementNoiseSigma);

% compute f(x{k} |Z{k-1}) *f(z{k} |x{k})

posteriorFiltered(:,k) = likelihood .*posteriorPredicted;

% normalize to get f(x{k} |Z{k})

posteriorFiltered(:,k) = posteriorFiltered(:,k)/trapz (xIntegration, . . .

posteriorFiltered(:,k));

% Find median, 95% confidence interval

percentiles = cumtrapz (xIntegration,posteriorFiltered(:,k));

iMedian = find(percentiles <= 0 .5,1,'last' );

iLower = find(percentiles <= 0 .025,1,'last' );

if isempty (iLower), iLower = 1; end;

iUpper = find(percentiles >= 0 .975,1,'first' );

if isempty (iUpper), iUpper = length (xIntegration); end

xHatMedian (k) = xIntegration (iMedian);

xLower (k) = xIntegration (iLower);

xUpper (k) = xIntegration (iUpper);

end

[~,iMax] = max (posteriorFiltered);

xHatMode = xIntegration (iMax);

xHatMean = xIntegration' *posteriorFiltered.*width;

% Plot true state and observed sequence

figure (10); clf;

ax = plotyy (0:nSamples-1,x,0:nSamples-1,z);

legend ( 'True state x_k' ,'Measured z_k' );

ylabel (ax (1),'x_k' ); ylabel (ax (2),'z_k' );

title ( 'Signals for tracking example' );

xlabel ( 'Iteration k' );



站长地图