代做Math 4470/6470 Possible Final Projects帮做R语言

- 首页 >> Web

Math 4470/6470 Possible Final Projects

Due Dec. 11, 2024

The final projects must be turned in no later than December 11, 2024 during the final presentations. You are expected to investigate the topic and create a plan of action that is approved by the instructor. The instructor may modify the assignment as you make progress.

Report: Your group must turn in a written report containing at least the following sections:

1.  Title, authors, and date.

2.  A one-paragraph abstract summarizing the paper.

3.  Introduction that gives background information and the problem(s) addressed.

4.  Methods used to solve the problem and examples.

5.  You should plan on providing extensive explanations, examples, and plenty of graphs.

6.  Discussion of what the examples show.

7.  Conclusions

8.  References cited (these should be legitimate - books, journal articles, or a professor’s notes. Please do not include random material found on the internet)

There is no page limit, but based on previous years, I expect the report to be about 12-15 pages long.

Presentation: Your team will give a 15 minute presentation on the work.  The total time must be divided approximately equally among the team members. You will not have time to present everything so you will have to concentrate on key parts and examples. Think about it as giving a lecture to teach the rest of the class about your topic.

Possible projects:

1.  Solution of the wave equation in 3D using spherical harmonics.  Explain what problems they are used to solve, how they are used, are they orthogonal?, properties, examples using them, etc.

2.  Reaction-difusion equations.  What are they?  What do they model?   Consider the Fisher equation,  ut  =  u xx  + λu(1 - u),  and a related equation ut  =  u xx  + λu(1 - u2 ).  Starting with the complete equations, derive a dimensionless version of the equations and identify the parameters left.  Based on Chapter 5 of the paper by Christina Kuttler, derive and describe steady state solutions.  Do the PDEs have traveling wave solutions?  Explain what they are and why they might be important. Present and explain the budworm population model.

3.  Exploration of difusion and its connection to Probability and random walks (related to the Gambler’s ruin). Make a connection between random walks and the difusion equation. This should be done as mathematically rigorous as possible.  Start in 1D but  also extend the methodology to 2D. It involves some probability and the central limit theorem.  Use these connections to describe a method for solving the heat equation  (which is the same as the difusion equation) using random variables.

4.  Solitons and Compactons. Find out what they are, what equations they satisfy. How do you derive these solutions?, what are their properties?  plot them, explain interactions between two solitons or compactons, connection to the KdV equation.  Based on the paper by Rosenau and Hyman.

5. Wave equation in 2 dimensions. The method of descent is used to find the solution based on the solution in 3 dimensions. Derive this solution in 2D.

6. Integral representations of elliptic PDEs, Potential theory. Begin with the solution of Laplace’s equation in a two-dimensional unit disc centered at the origin, B1(0), with Neumann boundary conditions

△u(x, y) = 0  in B1(0),    ∂n/∂ u(x, y) = g(x, y)    on the boundary of B1(0)

Look up and learn about Chebyshev polynomials and how they relate to the solution of this problem. Show examples of how to use Chebyshev polynomials in this context. Extend these ideas to 3D, where it might be more convenient to use Legendre polynomials.  Search for Orthogonal polynomials.

7. Vibrating beam equation.  Find the equation.  What are appropriate boundary conditions? Find a dimensionless equation. Solve using separation of variables. Plot the solution in time.

8. Stokes equation for incompressible fluid motion. What is the equation in 2 and 3 dimensions. Derive the fundamental solution in each dimension. For a rigid body moving in a fluid, how do you find the velocity field of the fluid based on a boundary integral? Find out about the reciprocity relation. Find examples with exact solutions.



站长地图