代写FINAL EXAM: ALGEBRAIC GEOMETRY II, SPRING 2023代做Python编程

- 首页 >> Web

FINAL  EXAM:  ALGEBRAIC  GEOMETRY  II,  SPRING  2023

You may use the textbook (Hartshorne), your notes, and lecture notes, and watch the recorded lecture videos.

Any other form. of assistance is strictly prohibited.

If you think that there are mistakes in the statements, explain the mistakes and prove what you think should be the correct statements.

You may use the statements in other problems to solve a particular problem,

even if you cannot prove these statements.

1. Preliminary

Problem 1(10 points ) Let f : X → Y be a birational morphism between two projective surfaces and assume that X  is smooth.  Let y  ∈  Y  be such that the set f-1 (y) consists of curves Ei , i = 1, . . . , n.  Prove that the intersection number matrix (aij  = Ei · Ej )1i,jn  is negative definite (Ei · Ej  is the intersection number of Ei  and Ej  in X).

As an application, prove the following negativity lemma: If ε aiEi  is relatively (very) ample, then ai  < 0, 1 ≤ i ≤ n.

Problem  2(10 points) Prove the following Rigidity lemma:  Every scheme is noetherian.  Let p  : X  → Z be a proper morphism such that p* OX   = OZ .  Let f : X  → Y be a nite type morphism.  Assume that there is a point z  ∈ Z  such that f (Xz ) is a point where Xz  is the ber of X over z. Then there is a non-empty open neighborhood U of z and a morphism g : U → Y such that f  : p-1 (U) → Y factors through g : U → Y.

Problem 3(10 points) Let Y be a connected noetherian scheme and p : X → Y

be a flat proper morphism. Assume that for every algebraically closed field k and every morphism Spec k → Y , the fiber product Xk  is isomorphic to Pk(n) for a fixed n. Prove that Pic(X) ∼= Pic(Y) × Z. Note that there are examples where X is not of the form. P(E).

As a corollary, prove that if B  is a non-singular projective curve over an alge- braically closed field and S → B is a dominant morphism from a projective variety such that all fibers over closed points are isomorphic to P1 , then S is a smooth projective surface, the morphism S → B  is smooth, and Pic(S)/num (i.e.  Picard group modulo numerical equivalence) is isomorphic to Z × Z.

In the following fix a noetherian scheme S, a smooth projective morphism π  : C → S of relative dimension 1 with geometrically connected fibers, sections σi   : S → C (i.e. π ◦ σi  = idS ), and a at projective morphism X → S, and a relative very ample invertible sheaf OX/S (1). Fix S-morphisms gi  : S → X .  Consider the following functor:

Homd (C, X, gi ) : (Sch/S)op  → S

T }→ {fT  : T ×SC ×SX, fT σi  = gi , fT(*)OX/T (1) has degree d with bers of CT  T}.

You will need the following theorem later.

Theorem  1.1.   The  functor  Homd (C, X, gi ) is  represented  by  a  quasi-projective scheme Hd  over S.  Here for simplicity  of notations,  we  omit gi ’s.

Theorem 1.2.  Let S be the spectrum of a finitely generated Z-algebra,  [f] ∈ Hd   be a point,  and k  the  residue field of the  image  of [f] in S(Thus  [f] corresponds  to  a morphism f : Ck  → Xk ) .  Assume that Xk  = X ×S Spec  k is smooth.  The k-scheme Hd  ×S  Spec k has dimension at least − degCk  ωXk   + dim Xk (1 − g(Ck ) − n) at [f]. The Zariski tangent space  of Hd  ×S  Spec  k at [f] is isomorphic to H0 (Ck , f *TX  ⊗ OCk (ε ci )), where TX  is the dual of ΩX , ci  ∈ Ck (k) are the images of gi (Spec k). Here Ck  is the fiber over Spec k and n is the number of sections.

Problem 4 (10 points ) Prove Theorem 1.1 when S = Spec k, C = Pk(1), X  Pn

a hypersurface (not necessarily smooth) k being a field, and there are no sections. In fact, give an explicit construction of a quasi-projective scheme over Spec k that represents the functor.

Prove that the dimension estimate in Theorem 1.2 holds even in this case. Here you have to interpret ωX   as the dualizing sheaf of X .

Problem 5 (10 points) Let S = Spec k, ci  ∈ C(k), xi  ∈ X(k), i = 1, . . . , n. Fix an ample line bundle L on X .  Let T be a smooth not necessarily proper curve. Consider the family

f : C × T → X × T, f(ci  × T) = xi. Consider the following two cases:

(1) Assume g(C) ≥ 1, and n = 1.  A;so assume that there is a point t0   ∈ T such that for a general t ∈ T, ft   ft0

(2) Assume that g(C) = 0, and n = 2. Also assume that the image of f is two dimensional, then T cannot be proper.

In both cases, let T be the smooth projective compactification of T.  Prove that

the rational map T × C --> X  (induced by T × C → X) cannot be extended to a

morphism in a neighborhood of T × c1 .

Prove that in both cases, one can find a non-constant morphism g  : P1  → X such that g(0) = f(c1 ), degg* L < degC (fjC×t)* L.

Hint: apply the following theorem on resolving the indeterminancy by repeatedly blowing-up smooth points to T- × C  -->  X:  Let S  -->  Pn   be a rational map from a smooth surface S. Then one can resolve the indeterminancy by repeatedly blowing-up smooth points. That is there is a sequence of blow-ups at smooth points Sn  → Sn -1  → . . . → S0  = S and commuting rational maps Si   --> Pn , such that Sn  → Pn  is a morphism.

2. Mori’s theorem

The goal is to prove the following celebrated theorem of Mori:

Theorem  2.1  (Mori).  Let  X  be  a  smooth  projective  variety  defined  over  an  al-

gebraically  closed field.  Assume  that ωX(*),  the  dual  invertible  sheaf of the  dualizing

sheaf ωX ,  is  ample.   Then for  any point x ∈ X,  there  is  a  non-constant morphism

f : P1   X such that f(0) = x,degf*ωX(*)  dim X + 1.

Up until the time of this nal exam, the only available proof of Mori’s theorem for X over the complex numbers C is via the following “reduction mod p” argument relying on Grothendieck’s general machinary of Hom schemes over a base, even if the statement is purely complex analytic.

Problem  6  (10 points) Everything is over an algebraically closed field.  Let f : C → X be a morphism and c ∈ C(k).

(1) If - degf*ωX   > g(C) dim X  and g(C) ≥ 1, then there is morphism g  : P1  → X such that g(0) = f (c).

(2) If - degf*ωX  > dim X +1 and C  P1 , then there is morphism g : P1  → X such that g(0) = f (c), - degg*ωX  ≤ dim X + 1.

Problem 7(10 points) Prove the theorem of Mori when k has positive charac- teristic. Hint: let F : Y → Y be the absolute Frobenius and L and invertible sheaf. What is F* L?

Problem 8(10 points) Use the technique of spreading-out to prove Mori’s theo- rem in characteristic 0. Hint: find a nitely generated Z-algebra A C k, a family of curves C → Spec A, varieties X → Spec A, whose geometric generic fiber is X/k , and fibers over closed points in Spec A are defined over positive characteristic.





站长地图