代写INT401: Fundamentals of Machine Learning Fall Semester Lab 6: Naive Bayes Classifier代写Python编程

- 首页 >> Database

INT401: Fundamentals of Machine Learning

Fall Semester

Lab 6: Naive Bayes Classifier

6.1    Objectives

•  Understand the knowledge on Naive Bayes classifier.

•  Learn how to create a Naive Bayes classifier to solve a toy problem on prediction.

6.2    Dataset Description

This is atoy dataset, which contains 21 attribute feature columns and one class label column.  The dataset is a two-class classification problem, where the first column is the class label.  All attributes have been mapped from text descriptions to numbers, where the same numbers in the same column represent the same attribute values. The dataset is divided into a training set toy train.csv and a test set toy test.csv, where the training set and the test set contain 7600 samples and 524 samples respectively.

6.3    Naive Bayes Classifier

6.3.1    Load dataset

•  (10 marks)  Read the training dataset into a dataframe.

•  (10 marks)  Read the test dataset, which will be used to estimate the classification accuracy.

6.3.2    Maximum Likelihood Estimation

When X contains M attributes which satisfy the conditional independence assumption, we have

where Xi  is the i-th attribute and Y is the class label.  Our goal is to train a classifier that will output the probability distribution over possible values of Y , which will take on its possible value k = 1, 2, ···,K is

Note that for any example X, the probability P(X) = P(X1 , X2, ···, XM ) is constant.  We can estimate these parameters using maximum likelihood estimates.

•  (20 marks)  Estimate the prior probability

•  (30 marks)  Estimate the conditional probability

It is noted that the #D{x} operator denotes the number of elements in the set D that satisfy property x and Nj  means that attribute Xj  has Nj  different values.

6.3.3    Model Inference

•  (20 marks)  For K categories, we calculate the posterior probability of each category separately for X = [x1 , x2, ···, xM ]T  and get  

Note:  If the conditional probability P(ˆ)(Xj  = xj |Y = yk ) that does not appear in the training set is needed in the test set, then the conditional probability under class k should be

     •  (10 marks)   For each X, we assign X to the class with the largest posterior probability logP(ˆ)(Y = yk |X).

6.4    Lab Report

• Write a short report which should contain a concise explanation of your implementation, results and observations.

For the score of each step, such as 15 points, the proportion of the three parts to the total score is as follows:

  Explanation of the execution of this step ( 50% ): how to design the data structure, how to design the algorithm to realize this step; how do you think about this problem

–  Code and comments ( 30% ): Whether the code is correct, attach comments to help understand the code

  Results and interpretation ( 20% ): Whether the running results are correct, explain the results to a certain extent, or what you find from them.  Please insert the clipped running image into your report for each step.

•  Submit the report and the python source code with the suitable comments electronically into the learning mall.

 It is highly recommended to use the latex typesetting language to write reports.

•  The report in pdf format and python source code of your implementation should be zipped into a single file. The naming of report is as follows:

e.g. StudentID LastName FirstName LabNumber.zip (123456789 Einstein Albert   1.zip)

6.5    Hints

Please refer to the lecture slides.

  Latex IDE: texstudio

  Python IDE: pycharm or vscode

  Use the python numpy and scipy library flexibly.


站长地图