代做ELEC4617 Power System Protection Laboratory 2: Implementation of Digital Relaying in Simulink代做Mat

- 首页 >> OS编程

ELEC4617 Power System Protection

Laboratory 2: Implementation of Digital Relaying in Simulink

A transmission line could be protected by differential protection, distance protection or even overcurrent protection. In this laboratory session, a distance protection based on impedance relay is to be developed in Simulink to study the basic concepts of distance protection.

  Trip

Filter and relay algorithm

Figure 1 Distance and over current protection

The operating region of an impedance relay is formed by a circle with its radius equal to the impedance setting. An impedance relay operates whenever the detected impedance falls within its operation region. When the detected impedance is outside the circle, the distance relay does not operate.

 

X

 

Operating

region

Figure 2 Impedance relay operating region

Assume that current transformer (CT) ratio is CTR and phase-voltage voltage transformer (VT) is VTR, the phase-voltage at the primary side of VT is  Vph and phase-current at the primary side of CT is Iph.

Impedance relay setting is the value seen at secondary sides of CT and VT. Here it is assumed as Zset. For an impedance relay, Zset  is a positive value. For other distance relays, it could a complex number.

The line impedance is proportional to its length. When a bolted three-phase fault occurs on the line,  the  impedance  detected  by  the  relay  is  the  impedance  of  line  segment  between  relay location and faulty point.

Assume that a bolted three-phase fault occurs at a point which is  l meters away from relay. The line per-unit-length positive-sequence impedance is  zl  .  Then the  impedance detected by the relay is

 

If a distance relay needs to reach 100% of a line with length of Len  or to protect the whole length of the transmission line, then the impedance relay setting should be equal to

 

When the bolted fault occurs on the line,  ZDetectByRelay   < Zset and the relay trips.

Modern distance protection is implemented by using more advantageous distance relays.

Objectives

This laboratory session targets at implementation of a digital distance protection in Simulink based on impedance relay. Three basic methods for computing magnitudes of voltage, current and impedance and the argument or angle of impedance are adopted.

Methods for processing voltage and current signals include:

1)  Sample and first-order derivative method;

2)  Frist-order and second-order derivative method;

3)  Two-sample-point technique.

Policy for doing this laboratory

No copying any files to PC and no email or internet retrieval of files. Plagiarism is not allowed.

Fundamentals of the methods to compute voltage, current and impedance

1.   Sample and first-order derivative method

Peak values of voltage and current are computed by

 

The magnitude of the impedance is

 

The argument of the impedance is

θZ  = θV  I  = tan-1(v①0  / v ') - tan-1(i①0  / i ')

Approximation of derivatives in discrete form.: Two-sample-point approximation:

 

Three-sample-point approximation:

 

where f could be i or v, Δt is the sampling interval, and kk-1 and k-2 are subscripts referring to a series of consecutive samples.

2.   Frist-order and second-order derivative method

 


 

The magnitude of the impedance is                                                                  

Z  = V / I = v '(t)2  + (v" (t) / ①0 )2 i '(t)2  + (i" (t) / ①0 )2                                                       (9)

The argument of the impedance is

θZ  θV  -θI  = tan-1 i "(i ') - tan-1 v "(v ')                                        (10) For  this  method,  the   following  expressions   are  used  to   compute   first-  and  second-order derivatives:

                                                                                 (11)

                                                                           (12)

where f could be i or v, Δt is the sampling interval, and k+1, k and k-1 are subscripts referring to a series of consecutive samples.

3.   Two-sample-point technique

Peak value of voltage is                                                    (13a)

Peak value of current is computed by

                                                            (13b)

Z = V I                                                                                                         (14)

Impedance angle is given by

 

Procedures

Step 1

The program using method 1 is given as an example. It is based on equations (1) through (6). Open  files  named  Laboratory2Method1main.m  and  Laboratory2Method1.mdl  under  the directory of Laboratory2 on the desktop.   Below  are some fundamental variables settings and their explanations. There is a accompanying subroutine named as ZTrajectory.m. There is no need to change it. Other parts in the program of Laboratory2Method1main.m are for drawing. You    may     not    change     them     as    well.     Laboratory2Method1.mdl     is     called    by Laboratory2Method1main.m. So you only need to run Laboratory2Method1main.m.

Ts=5E-04;               % Sampling time in second.

VsLL=2.2E03;         %Line-line voltage of source.

Rsource=1E-05;       % Source resistance.

Lsource=2e-5;          % Source inductance.

Duration=0.4;          % Simulation time in seconds.

R_Line=5E-01;        % Transmission line resistance in ohm.

L_Line=1E-02;        % Transmission line inductance in Henry.

Zline=sqrt(R_Line^2+(2*pi*50*L_Line)^2); CTR=50;                  % CT ratio.

VTR=50;                  % VT ratio

% IfVTR/CTR=1, no adjustment required to calculated impedance. RLoad=50;              % Per-phase load resistance in ohm.

ImpedanceRelaySetting=1.2* Zline;     % Radius = Relay impedance setting. FaultOccurMoment=0.15;       % It must be less than Duration.

% BreakerControlInAction=0: Breaker is controlled by digital relay;

% BreakerControlInAction=1: Breaker is always closed for testing V,I,Z algorithm. BreakerControlInAction=1;

sim('Laboratory2Method1.mdl');% To run the Simulink program.

Laboratory2Method1.mdl is a Simulink program for implementing overcurrent and distance protection  for the power  system  as  shown  in  Fig.1.  Each  of the  three  different  methods  as described above can be implemented to compute magnitudes of voltage, current and impedance

and the angle of impedance. In the given program, Method 1 is adopted.

 

Figure 3 Overall system in Simulink for distance protection study Content in BLOCK “V & I sensing” in Fig. 3 is shown in Fig. 4.

 

Figure 4 Voltage and current sensing Content in BLOCK “Relay” in Fig. 3 is shown in Fig. 5.

 

Figure 5 Relay model

Content in BLOCK “ImpedanceCalculator” in Fig. 5 is shown in Fig. 6.

 

Figure 6 Impedance computation block

Content in BLOCK “ComplexImpedance_U1” in Fig. 6 is shown in Fig. 7.

 

Figure 7 Block for computing magnitudes of voltage, current and impedance and angle of impedance

The codes in BLOCK “Magnitude and Angle Computation” in Fig. 7 is shown below, where Method 1 is adopted.

function [iout,vout,VMag,thetaV,IMag,thetaI,ZMag,ZAngle,co,deltaT1,IDeritive1,VDeritive1] = fcn(i,v,time,iold,vold,counter,deltaT)

iout=iold; vout=vold; deltaT1=deltaT; IDeritive1=0;

VDeritive1=0;

VMag=0;  thetaV=0;  IMag=0;  thetaI=0;  ZMag=0;  ZAngle=0; co=counter+1;

mega=2*pi*50; if counter==1

iout(1)=i;   vout(1)=v;

else

if counter==2

deltaT1=time;

iout(2)=i;

vout(2)=v;

iout(1)=iold(2);   vout(1)=vold(2);

else

iout(3)=i;

iout(2)=iold(3); iout(1)=iold(2); vout(3)=v;

vout(2)=vold(3); vout(1)=vold(2);

VDeritive1=(3*vout(3)-4*vout(2)+vout(1))/(2*deltaT); IDeritive1=(3*iout(3)-4*iout(2)+iout(1))/(2*deltaT);

thetaV=atan(v*omega/VDeritive1);

thetaI=atan(i*omega/IDeritive1); ZAngle=thetaV-thetaI;

if ZAngle<-1.0

ZAngle=ZAngle+pi;

end

VMag=sqrt(v^2+(VDeritive1/omega)^2); IMag=sqrt(i^2+(IDeritive1/omega)^2);

ZMag=VMag/IMag;

end end

Content in BLOCK “ImpedanceRelay” in Fig. 5 is shown in Fig. 8.

 

Figure 8 Block for implementing digital relay logic

The code for relay logic in Fig. 8 is given below.

Function [BK_Command,InterLock2,counter1]=

fcn(Impedance,ImpedanceRelaySetting,counter,InterLock1)

InterLock2=InterLock1; InterLock1=0;

Z1=Impedance(1);       Z1Ang=Impedance(2); R1=Z1*cos(Z1Ang);   X1=Z1*sin(Z1Ang);

BK_Command=1;      % Breaker is in closed-position.

if sqrt(R1^2+X1^2)<ImpedanceRelaySetting && counter>50 && InterLock1==0

BK_Command=0; % When the impedance falls in the trip region, open the breaker. InterLock2=1; % set Interlock to 1.

end

if InterLock2==1 && counter>150

BK_Command=0; end

counter1=counter+1;

BK_Command=double(BK_Command); return;

Study both programs Laboratory2Method1main.m and Laboratory2Method1.mdl.    Then run the program Laboratory2Method1main.musing MATLAB under two cases:

1)  BreakerControlInAction=1; 2) BreakerControlInAction=0.

Record  steady-state  magnitudes  of voltage,  current  and  impedance  and  angle  of impedance

before and after faults from graphs. Compare them with theoretical values. Comment the results for both cases.

Step 2

Modify the code in the BLOCK as shown in Fig. 7 using Method 2 to compute the magnitudes of voltage,    current    and     impedance    and    angle     of    impedance.    Save    the     file    using L2Method2_YourNameM.m and L2Method2_YourNameMDL.mdl.

Record  steady-state  magnitudes  of voltage,  current  and  impedance  and  angle  of impedance before and after faults from graphs. Compare them with theoretical values.

Step 3

Modify the code in the BLOCK as shown as in Fig. 7 using Method 3 to compute the magnitudes of   voltage,   current    and    impedance    and   angle    of   impedance.    Save    the    file   using L2Method3_YourNameM.m and L2Method3_YourNameMDL.mdl.

Record  steady-state  magnitudes  of voltage,  current  and  impedance  and  angle  of impedance before and after faults from graphs. Compare them with theoretical values.

Step 4

Compare the results from three methods and comment on the results.

Submission

Submit all four files from steps 2 and 3. Prepare a word file with comparison between calculated and theoretical magnitudes of voltage, current and impedance and angle of impedance for each of the three methods. The word file should include your comments from Step 4. Submit this file using filename of L2_YourName_Comments.doc.


站长地图