代写Problem set 11 Final Exam代做留学生SQL语言程序

- 首页 >> OS编程

Final Exam

Please answer all questions, displaying your work in aneat and orderly manner. You may download the exam PDF document.  Partial credit will be given to correct steps shown. This exam is open book, open notes and calculators maybe used. Communication devices are not allowed. Appropriate statistical

evidence is required in your responses.

You may use the space provided for your answers or upload scanned images (see the last item) of your responses.  For instance, you may download and print the exam pdf document, write (neatly) your

answers on it, scan and upload it.

Note that the data used in this exam is not real.

1.    A study looked at the impact of whether or not a first year student attended orientation and if they lived on campus or not on their overall satisfaction with student services (measured on a  ten point scale at the end of the first year).  A two by two factorial analysis of variance was

performed via multiple regression.  The results indicated a significant interaction.  Using the means table below, plot the interaction and interpret the results.

2.    Given the data and contrast codes below, write the estimated regression model Y(̂)i =

b0 +b1C1+b2C2

Descriptive statistics:

Contrasts:

3.    A highschool introduced an experiential learning component to their science courses in 11th grade.  In the past, all students participated in an in-school, applied project over the course of the school year.  This year, instead, they randomly assigned students to different programs/projects in and outside the school.  Group 1 was assigned to the traditional, existing in-school applied project.  Group 2 was assigned to participate in an engineering program at a  local firm, Group 3 was assigned to a medical research center and group 4 was assigned to a children’s science museum.  At the end of the school year, all students took an end of year assessment, aligned to the curriculum,  to determine their level of scientific skills and knowledge.  The scale scores range from 0 to 20.  To analyze the data and compare performance by group, the following codes (see below) were used.  Using the information below and the SPSS output, summarize the results of the analysis. Be concise but include all relevant statistical evidence.

Report

Y

Group

Mean

N

Std. Deviation

1.00

14.0833

12

2.31432

2.00

16.9167

12

2.27470

3.00

13.0000

12

1.90693

4.00

16.3333

12

2.18812

Total

15.0833

48

2.65645

Model Summary

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

1

.609a

.371

.328

2.17684

a. Predictors: (Constant), D3, D2, D1

ANOVAa

Model

Sum of Squares

df

Mean Square

F

Sig.

1 Regression

Residual

Total

123.167

3

41.056

8.664

.000b

208.500

44

4.739

331.667

47

a. Dependent Variable: Y

b. Predictors: (Constant), D3, D2, D1

Coefficientsa

Unstandardized

Standardized

Model

Coefficients

Coefficients

t

Sig.

B

Std. Error

Beta

1 (Constant) D1

D2

D3

14.083

.628

22.411

.000

2.833

.889

.467

3.188

.003

-1.083

.889

-.178

-1.219

.229

2.250

.889

.371

2.532

.015

a. Dependent Variable: Y

4.    An organization provides training courses in the use of their class scheduling software for

schools.  This particular course is delivered to administrators (participants) who had never previously used software to schedule classes. An end of course project is given to all participants and is graded out of 100 points.   The organization would like to test whether mode of delivery    (online (coded -1) or in person (coded 1)) results in different performance on the course ending   project.  To control for differences in computer knowledge, the organizers administer a computer software literacy test (50-point scale) prior to the training.  Participants are randomly assigned to the two modes of delivery (18 to each mode).  They conduct an analysis of covariance to determine if the different modes result in different scores on the end of course assessment.  Use the output on the following pages to summarize the findings.  Be concise while including the relevant statistical evidence.

Model Summary

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

1

2

.943a .949b

.890 .901

.883 .892

1.57063 1.51222

ANOVAa

Model

Sum of Squares

df

Mean Square

F

Sig.

1 Regression

Residual

Total

656.593

2

328.296

133.081

.000b

81.407

33

2.467

738.000

35

2 Regression

Residual

Total

664.822

3

221.607

96.907

.000c

73.178

32

2.287

738.000

35

站长地图