代做CS 1332 Exam 2 Spring Semester 2021代做留学生Java程序

- 首页 >> OS编程

CS 1332 Exam 2

Spring Semester 2021

1) E fficiency - Multiple Choice [21 points]

For each of the operations listed below, determine the time complexity of the operation as it pertains to the data structure. Select the bubble corresponding to your choice in the space provided, and completely fill in the bubble. Unless otherwise stated, assume the worst-case time complexity.

However, make sure you choose the tightest Big-O upper bound possible for the operation. Do not use an amortized analysis for these operations unless otherwise specified.

A) What is the average case cost of finding an arbitrary key-value pair in an array-backed HashMap that uses linear probing and  H(key) = 0 for any key.

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

B) What is the average-case cost of finding the median (i. e. Middle-most) element in a SkipList where the coin being ippedalways comes up Tails?

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

C) What is the worst-case cost of adding data to a 2-4 Tree when the addition of the data causes overflow in multiple nodes?

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

D) What is the cost of calculating the height of a balanced binary tree?

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

E) What is the cost of determining the second smallest value in a Min-heap without modifying the

heap? You may assume that the heap has at least three more values and that you have access to the backing array.

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

F) What is the cost of finding an arbitrary key-value pair in an array-backed HashMap that uses

external chaining, uses AVL trees to handle collisions instead of Singly-Linked Lists, and H(key) = 0 for any key.

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

G) What is the cost of finding the value of the node that is the “deepest” (i. e. Furthest node from the root) in an AVL Tree? You may assume that the tree will only have one such deepest node, you begin search at the root.

 O(1)            O(log n)        O(n)         O(nlog n)         O(n2)

2) 2-4 Trees - Diagramming [6 points]

Given the following initial 2-4 trees in the left column below. Perform. the stated operation, add or remove, for each tree. Draw the resulting 2-4 tree in the right column. If you want, you can draw multiple steps (circle the final step if you do so). Follow the implementation taught in the 1332   module videos and live lectures.

Implementation Details:

If you need to promote an element from a node, use the second element. When removing from an internal node, use the predecessor. When checking if a transfer is possible, check the left sibling before the right sibling. If a fusion is necessary and the node has more than one parent data, choose the left parent data.


3) AVL Operations - Diagramming [12 points]

Given the following initial AVLs in the left column below. Perform. the stated operation, add or remove, for each tree. Draw the resulting AVL in the right column. If you want, you can draw multiple steps (circle the final step if you do so). If necessary for any operation, use the predecessor node.


4) AVL Operations - MC [6 points]

Given the following initial AVL tree directly below. A node was added to the tree with the data 26. The resulting tree after the add operation is at the bottom. Choose the correct rotation(s) that produced   the resulting tree. If necessary for any operation, use the successor node.

Choose the correct rotation(s) that produced the resulting tree.:

 Right rotation on 30

 Left rotation on 21

 Left rotation on 21 followed by the right rotation on 30

 Left rotation on 30 followed by the right rotation on 21

 Right rotation on 30 followed by the left rotation on 21

5) Heaps - Diagramming [15 points]

Given the following initial states of the array-backed MaxHeap, perform the following operations. Show all intermediate steps/swaps on a new line of the table. Indicate the swapped elements by appending an “x” to the number: for example, if 32 was swapped, write “32x.”

add(17)

0

1

2

3

4

5

6

7

8

9

10

11

null

18

16

5

13

12

3

2

6

9

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remove()

0

1

2

3

4

5

6

7

8

9

10

11

null

18

16

5

13

12

3

2

6

9

11

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


6) Hash Map – Diagramming [10 points]

Goal: The HashMap below is backed by an array of capacity 5. Add (-25, c) to the HashMap. The maximum load factor for this HashMap is 0.5.

Requirements: If you need a collision resolution strategy, use linear probing. Deleted entries are indicated by DEL markers. If you need to resize the HashMap, resize it to a capacity of (2 × current capacity) + 1. The hashcode of a particular number is the absolute value of the number itself. The  compression function is to mod by the table length.

Initial Backing Array:

Final Backing Array:




7) Heaps - Coding [15 points]

Goal: Given the following MinHeap class, implement the remove() method.

Requirements: Your code should be as efficient as possible. You may not assume any other method in the MinHeap class is implemented. You may assume that everything from java.util is imported.

public class MinHeap<T> {

private T[] backingArray;

int size;

/**

* Removes and returns the smallest element in the MinHeap.

*

* The order property of the heap must be maintained after removing.

*

* @return the smallest data in the heap

* @throws java.util.NoSuchElementException if the heap is empty

*/

public T remove() {

// YOUR CODE HERE, USE THE NEXT PAGE IF NEEDED

 

 

 

 

} // END OF METHOD

} // END OF CLASS

8) Binary Search Tree - Coding [15 points]

Goal: Write the countNodesLessThan() method. This method will take in a data input of type int, and you are to count the number of nodes that hold data strictly less than (and NOT equal to) the data    input. You may assume that a valid BST has been constructed and is not empty, which you have access to via the instance variable root. You may also assume that every Node's data is an int, and that there are no nodes that contain duplicate data or null data.

Requirements: Your code should be as efficient as possible. Do not attempt to use any methods other than those you write yourself, as doing so may result in large deductions. However, you are allowed to write and use your own helper methods. Additionally, note that BST does not have a size variable, and attempting to access a size variable without declaration may result in deductions. Since Node is a private inner class of BST, you should access its fields directly (e.g. use node.data instead   of getters/setters such as node.getData()).

Example:

●   If given the BST shown below and the inputted data 7, you would return 3

●   If given the BST shown below and the inputted data 1, you would return 0

●   If given the BST shown below and the inputted data 15, you would return 5

 

public class BST {

private class Node {

public int data;

public Node left;

public Node right;

public Node(int data, Node left, Node right) { ... }

}

private Node root;

/**

* Count the number of nodes that hold data less than the inputted data.

*

* @param data The data to find nodes less than


* @return An integer representing the number of nodes that hold data less

*         than the inputted data. If there are no smaller nodes, return 0.

*/

public int countNodesLessThan(int data) {

// YOUR CODE HERE, USE THE NEXT PAGE IF NEEDED

 

 




 

} // END OF METHOD

} // END OF CLASS

 

站长地图