代做Math 2174, Spring 2024, Final Project帮做R程序

- 首页 >> OS编程

Math 2174, Spring 2024, Final Project

Besides the theorems in the lecture notes, you may use the following equations without proof:

If k ≠ 0,

1.  Function f(x) satisfies f(x + 2) = f(x), and


(a)  (6 points)  Sketch f(x) in the interval [−3, 3].

Open  and/or closed circles should be  distinguishable from  each  other.

In particular, at each of x = −3, −2, −1, 0, 1, 2, 3, the unique value off(x) should be clear from the sketch. 

(b)  (10 points)  Find the Fourier series *(x) of f(x).

When computing coefficient(s),  do NOT separate  into  even  and odd  cases.

(c)  (6 points)  Sketch *(x) in the interval [−3, 3].

Open  and/or closed circles should be  distinguishable from  each  other.

In particular, at each of x = −3, −2, −1, 0, 1, 2, 3, the unique value off(x) should be clear from the sketch.

(d)  (6 points)  Use your answers above to compute the infinite sum

2.  A thin metal rod R1 of length 1cm lies horizontally with insulated ends.  Its temperature p(x,t) at point x along the rod at time t obeys the Heat Conduction equations with homogeneous boundary conditions:


Suppose p(x,t) is given by

The temperature u(x,t) of an identical rod R2 obeys the same equations except at its right end, which is insulated at 3 degrees:

(a)  (4 points)  Find the steady-state temperature distribution v(x) of R2.

(b)  (6 points)  Use (Eq1) to find dn  = 2 l01 f(x)sin(nπx) dx.

(c)  (10 points)  Use your answers above to find the transient temperature distribution w(x,t) of R2. When computing coefficient(s),  do NOT separate  into  even  and odd  cases.





站长地图