代写COMM1110 Evidence-Based Problem Solving Assessment 4代写C/C++程序

- 首页 >> OS编程

COMM1110 Evidence-Based Problem Solving

Assessment 4: Case project part 2

Guideline and Marking Rubric

Due date: Week 11: 11:59 AM (midday), Wednesday 24th April

Project Overview

In Assessment 3, you worked as a consultant, and your client, GreenMart, a retail supermarket chain, needed assistance with a notable rise in food waste, especially in the fresh food section. You employed techniques like the 2W and logic tree to organize information and develop logical problem-solving strategies. Additionally, you conducted basic Excel data analysis and initiated an ethical analysis of the dilemma.

Now, in Assessment 4, we'll conduct a more in-depth analysis to address the increased food waste issue at GreenMart. This assessment mirrors the case project we encounter daily as managers in the workplace. Therefore, we'll apply all the knowledge we've gained in our course to help you develop statistical, ethics, and analytical skills necessary to solve the problem.

You will use the same personal Excel data you downloaded from Assessment 3, and we will continue to conduct data analysis based on that. If you need assistance, you can refer to page 6 in the Assessment 3 Guideline document for instructions on how to download your personal Excel data.

.  Word Limit: 2,000 words with a 10% buffer, allowing for a maximum of 2,200 words without penalty. There's no minimum word requirement, so any word count below 2,200 is acceptable.

.   The  word  count  rule  is  straightforward    everything  in  your  report,  such  as  headings, subheadings, and in-text citations, contribute to the word count, except for the reference list (bibliography), and any inserted screenshots or images. Use your Word document's built-in word count feature to check your word count accurately.

.   Structure and Format: No need to have cover page, introduction, or executive summary. Simply begin your report directly with section 1. Write in a business report style (e.g., using an essay format, formal language, headings, and subheadings to make your report easy to read).

.   Referencing Style.: While referencing is optional, if you choose to cite external information, adhere to the Harvard referencing style. for any sources cited in your report. (see the guideline link -How to Cite Different Sources with Harvard Referencing | UNSW Australia)

Section 1 – Further Statistical Excel Data Analysis (40%):

This section is approximately 700 words (guide only, not a word limit).

Apply all statistical data analysis skills you learned in our course to conduct a deeper analysis of the food waste issue, using the same personal data file from Assessment 3.

1)  Formulating Hypotheses on Variable Relationships:

Let's review your personal Excel dataset and the analysis you conducted on Food waste in your Assessment 3. Based on that, you need to identify 3 or 4 variables you believe will influence Quantity Wasted. Explain why you think they have an impact, and predict the strength (weak, moderate, strong) and direction (positive or negative) of each relationship. No Excel data analysis needed; just provide clear explanations.

Instruction - These variables you select aren't confined to the data in your Excel file; they can be anything you deem fit and relevant, such as the inflation rate.

Next, drawing from what you learned in week 7, you need to develop a Null Hypothesis and Alternative Hypothesis. Clearly state each and explain why you're creating them and how testing them could help address the food waste issue. No specific Excel data analysis is required; simply outline the hypotheses you want to create.

2)  Correlation Analysis:

a) Shelf Time and Food Waste: Analyse the correlation between Shelf Time and Food Waste for fruits and vegetables separately, using a suitable visualization tool such as a Table, Line Chart, etc., to display the correlation in your report. Clearly explain the direction and strength of the correlation and discuss how shelf time influences food waste.

b) Price and Food Waste: Analyse the correlation between Price and Food Waste for fruits and vegetables separately, using a suitable visualization tool such as a Table, Line Chart, etc., to display the correlation in your report. Clearly explain the direction and strength of the correlation and discuss how Price influences food waste.

c) Exploring Other Factors: Explore 1 or 2 additional factors correlated with Quantity Wasted. You can select any existing column in your Excel file or create new columns containing relevant information based on existing data in your Excel. For each of these additional factors, analyse the correlation between them and Food Waste for fruits and vegetables separately, using a suitable visual tool such as a Table, Line Chart, etc., to display the correlation in your report. Clearly explain the direction and strength of the correlation and discuss any insights these additional factors provide into Green Mart’s food waste.

3)  Regression Analysis

a) Selecting Variables for Regression Analysis: Before conducting the linear regression, you need to select suitable variables you will include in your model. Please reflect on the hypotheses you created in part (1) above and any insights you gained from the correlation analysis above. Have your initial hypotheses changed based on the correlation results? Are there any new variables that should be included in the linear regression analysis? Provide a clear and concise justification for each variable you want to add to your regression model, explaining its relevance and potential contribution to addressing the Quantity Wasted issue.

b)  Regression  Analysis: Conduct a linear regression analysis to analyse the relationship between Quantity Wasted and all  variables your selected. Clearly explain how adding or removing these variables affects your regression model outcomes. Interpret your model result, considering their alignment with your initial hypotheses and correlation insights. Discuss the implications for GreenMart's food waste and explain the most influential variable identified by the regression model. You need to include screenshots of the key parts of your regression model in the report, accompanied by your explanation of the findings.

Section 2 – In-depth Ethical Analysis on Ethical Dilemma (25%)

This section is approximately 600 words (guide only, not a word limit).

Apply the 7-step ethical decision-making framework (from Week 4’s lecture and tutorial) to address one of the following ethical dilemmas:

a)  Should GreenMart switch to smaller packaging, like 1 kg per package, or opt for larger packaging, considering potential contributions to plastic pollution and consumer preferences?

b)  Should GreenMart invest in enhancing its supply chain logistics, such as improving transportation efficiency and reducing delivery times, to mitigate food waste, even though it might lead to increased product prices for consumers and higher fuel consumption resulting in more carbon emissions?

Instruction: GreenMart is the main stakeholder here. Provide a clear explanation for each step, and ensure you make your key points in each step clear. This model serves as one common tool to guide your approach when dealing with an ethical dilemma issue during your internship.

Section 3 – Analytical Problem-Solving for Developing Solutions (35%):

This section is approximately 700 words (guide only, not a word limit).

1) Structuring the Argument:

GreenMart wants to understand how you structure your arguments to develop practical problem-solving solutions. Please insert the provided table below directly into your report to answer this question. All content within this table contributes to the word count, so ensure your responses are concise and clear to read and avoid using screenshot.

Organize my arguments to develop practical solution

Situation

……..

Observation

………

Resolution

……..

Instruction:

For Situation – Identify and summarize the current situation regarding the food waste issue, explaining it to provide any reader who may read your business report with a clear understanding of the report's purpose and context.

For Observations: Highlight key insights from your business analysis work, including insights from your logic tree in Assessment 3, all Excel data analysis you have done from both Assessment 3 and 4, and ethical considerations discussed in this report.

For Resolution, the key is to provide well-reasoned general directions, supported by all analysis you conducted in this assessment, to address the food waste issue. These directions should not be overly specific, as you will offer detailed recommendations in part (2) below.

2) Solution Recommendations:

Based on the argument structure you outlined in (1) above, you now need to present your final recommendations and solutions on how GreenMart should address the food waste issue. Ensure that your recommendations are informed and supported by your data analysis and logical reasoning. Clearly explain the rationale behind each recommendation and how it is expected to mitigate the food waste problem.

3)   Assumptions and Limitations:

Explicitly identify any assumptions made during your analyses and acknowledge the limitations of the data analysis in your business report. Explain the potential impact of these assumptions and limitations on your findings and recommendations, ensuring that the reader is fully informed of the context and constraints of your analysis.

 

站长地图