代写Math 245 - Linear Algebra - Review questions for Exam 3代做留学生Matlab程序

- 首页 >> OS编程

Math 245 - Linear Algebra - Review questions for Exam 3

1. Circle your choice. No explanation required.

(1) True–False: If A is an n X n orthogonal matrix, then IAu I =  IuI for all u in Rn

(2) True False: If A is a symmetric matrix, then C(A)T = N(A).

(3) True False: An n X n matrix with real eigenvalues is symmetric.

(4) True – False: If a matrix is orthogonally diagonalizable, then it is sym- metric.

(5) True False: The inverse of a symmetric matrix is symmetric.

(6) True False:  An n X n matrix which is orthogonally diagonalizable is symmetric.

(7) True False: If a x e C(A), then the orthogonal projection of x onto C(A) is x.

(8) True False: The orthogonal projection of a vector y onto a vector u is a scalar multiple of y.

(9) True False: If A is an 4 X 5 matrix then every x e R4  can be written as y + z, where y e N(A) and z e R(A).

(10) True False: If x e N(A) then the orthogonal projection of x onto R(A) is 0.

(11) True False: If A = AT and Au = u and Av = —v, then u · v = 0.

(12) True False:  The least squares solution to Ax = b is the point in the column space of A closest to b.

(13) True False: In the QR factorization A  = QR, the closest vector in the column space of A to x is QQTx.

(14) True False:  If a 2 X 2 symmetric matrix A has one positive and one

negative eigenvalue, then the curve [x, y] A = 1 is a hyperbola.

(15) True False: If A = AT and A2  = 0,then A = 0.

(16) True False: If A is an n X n symmetric matrix with positive eigenvalues, then Au · u ≥ 0 for all u in Rn .

(17) True False: If a square matrix has orthonormal columns, it has orthonor- mal rows.

(18) True False: If W is a subspace of Rn, then W and W have no vectors in common.

(19) True False: An n X n symmetric matrix has distinct real eigenvalues.

(20) True – False: Any orthogonal matrix is orthogonallydiagonalizable.

2. Find basis for each of the four fundamental subspacesR(A), C(A), N(A), N(AT) for

3. Suppose A is an 6 x 6 matrix and there are b so that the system Ax = bhas no solution. Answer the following questions with sufficient explanations.

(a) What can you say about the rank of A?

(b) What can you say about the null space of A?

(c) Does ATx = 0 have solutions other than x = 0?

(d) Does ATx = bhave a solution for every b?

4. Use the Gram-Schmidt process (by hand) to orthonormalize the following ba- sis for R3: {(1, 0, 0), (1, 1, 0), (1, 0, 1)}.

5. Compute the orthogonal complement of the row space of the matrix

6. Let

Find a u e R(A) and a v e N(A) so that u + v = (1, 1, 1, 1).

7. Let S = {(x1, x2, x3, x4) e R4 : x1 + x2 + x3 + x4  = 0}.

(a) Find a basis for S.

(b) Find a basis for S.

(c) Find the orthogonal projection of the vector (1, 2, 一1, 3) onto S.

(d) Find the orthogonal projection of the vector (1, 2, 一1, 3) onto S.

8. Let S = {(x, y, z) : x 一 y 一 z = 0}.

(a) Show that S is a subspace of R3 .

(b) Find a closest point in S to (1, 0, 0).

(c) Find a basis for S.

9. Let S = {(x, y, z, w) e R4 : x + 2y = 0, z + 2w = 0}.

(a) Find a basis for S.

(b) Find the closest point in S to (1, 0, 0, 0).

10.  Find a basis for the set of vectors in R4 which are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1). Find the projection of the vector (1, 1, 0, 9) onto this subspace,

11.  Let

S = {(x, y, z, w) e R4  : x +2y 一 z + w = 0, 2x +4y 一 3z = 0, x +2y+ z +5w = 0}.

Find a basis for S.

12. For the matrix

with reduced form.

find the orthogonal projection of the vector (2, 0, 0) onto the column space of A. 13. Let w1, · · · , wn be n real numbers such that and let

The n X n matrix H = I — 2WWT is called the Householder matrix.

(a) Show that H is a symmetric matrix.

(b) Show that H is an orthogonal matrix.

14.  Suppose A is an n X n diagonalizable matrix with eigenvalues λ1, · · · , λn . Compute det eA . Be sure to explain what you are doing.

(b) Let A be the following 3 X 3 matrix:

One can show (you don’thave to) that det(λI — A) = (λ — 3)(λ — 6)(λ — 9). Find a matrix W so that WTAW is a diagonal matrix.

15. For the matrix

find a matrix Q so that QTAQis a diagonal matrix.

16. Find the QR factorization of

17. Find the QR factorization of

18. Find the QR factorization of

19. Write the matrix

as

where Q is an orthogonal matrix.

20. Let

(a) Find a matrix Q such that

(b) Find a matrix B such that B3  = A.

21. Draw the curve 3x2 - 2xy + 3y2 = 4. Be sure to identify all appropriate axis. 22. Draw, as accurately as possible, the curve 3x2 + 8xy + 3y2 = 28.

23. Use linear algebra to draw the curve x2 + xy + y2 = 1.

24. Use linear algebra to draw the curve x2 + xy + y2 = 1.

25. Draw the curve 3x2 - 2xy + 3y2 = 4. Be sure to identify all appropriate axis.

26.  If λ1  and λ2  are the eigenvalues of the matrix what type of curve is

ax2 + 2bxy + cy2 = 1 when λ1 λ2  < 0?

27. Solve the least squares problem

28. Consider the linear system

(a) Prove there is no solution to this system.

(b) Find the least squares solution to this system.

29.  Suppose {v1, v2, v3} forms a basis for R3. For a particular vector v ∈ V, we suppose the following: v · v1 = 2, v · v2 = −1, v · v3 = 4. Compute the following.

a. v

b. The orthogonal projection of v onto the space spanned by v1 and v2 . c. The angle between v and v1 .

d. v1(⊥) .

e. {v1, v2, v3} .

30. Find the singular value decomposition of

and find an orthonormal basis for each of the four fundamental subspaces.

31. Find the singular value decomposition of

and find an orthonormal basis for each of the four fundamental subspaces.

32. Find the singular value decomposition of

and find an orthonormal basis for each of the four fundamental subspaces.

33. Find the singular value decomposition of

and find an orthonormal basis for each of the four fundamental subspaces.

34.  Suppose A is square and invertible.  Find the singular value decomposition of A1 in terms of A.

35.  Show that if A is square then |det A| is the product of the singular values of A.





站长地图