代做HW6 - PHYS 450代做留学生Matlab编程

- 首页 >> OS编程

HW6 - PHYS 450 (Each exercise is worth 3 points.  Each homework is weighted equally at the end of the semester, regardless of its number of exercises.)

General homework instructions:

. Digital version of homework:

{ Before the Canvas assignment deadline, upload ONE PDF ile containing your scanned solutions.

{ The ile may include embedded Mathematica igures or screenshots (if you are unsure how to do this, please consult me or one of your classmates), but NO Mathematica notebooks are allowed.

{ Check the size of your PDF ile; if it is too large, reduce the resolution of your screenshots or igures.

.  Paper version of homework:

{ REWRITE a clean version of your entire homework (do not submit the  same pages as the digital version) with neat handwriting or typed, orga-nized, and annotated solutions. After the initial problem-solving phase, take the time to organize and analyze your solutions. One  purpose of  homework is to teach you to communicate complex theoretical ideas clearly.

{ You CANNOT change your answer from the digital version.  If you ind a mistake while rewriting, make a note and explain what you think went wrong.

{ Important: I will not grade the digital version, but I will compare it to the

paper one. Anything not present in the paper version will not be graded. { Show ALL your work and explain your reasoning.

{ For this clean version of the homework, number and letter each problem and part in order.

{ Circle or box all your inal answers.

{ Mathematica igures or screenshots are NOT allowed; plots must be drawn by hand,  including  labels,  annotations,  and  explanations  of the  plot’s reasonableness.

{ Submit your paper solution to the class after the digital homework dead- line.

1 A sphere of radius a, centered at the origin, carries charge density

where k > 0 is a constant, andr , θ are the usual spherical coordinates.  Find the approximate potential for points on the z-axis, far from the sphere (dominant term of the multipole expansion).

2  In Example 5.2, Griffiths works out the general solution to motion of a particle in

“crossed E and B ields”(E points in the z-direction, B in the x-direction). Work carefully through his solution and make sure you follow it. Then, use it to answer the following:

2.1 uppose the particle starts at the origin at t = 0, with a given velocity

v(t = 0) = v0 y(ˆ). Use Griffiths’formal results (Eq 5.6) to ind the“special”

initial speed v0  whose subsequent motion is simple straight-line constant- speed motion.  Verify that this answer makes sense by using right-hand rule arguments and the Lorentz force law.

2.2 Now suppose your particle starts at the origin with ~ v(t = 0) = v'0ˆy, with starting speed v0(')  exactly HALF the velocity you found in part (a). Find and sketch the resulting trajectory of the particle.  Is the kinetic energy of the particle constant with time?  Briely comment.  If the kinetic energy is not constant, who is doing work?

3  Superposition for magnetic ields:

3.1  An ininitely long wire has been bent into a right-angle turn, as shown in Figure 1 below.  The “curvy part” where it bends is a perfect quarter circle of radius R.  Point P is exactly at the center of that quarter circle.

A steady current I lows through this wire.   Find B(~) at point P  (both

magnitude and direction).  No need to derive any formulas “from scratch” if you can get them from Gri伍ths’or lecture’s examples - just tell me  where you get them from.

3.2  How does your answer change if now the long wire is bent into the hair- pinlike shape, as shown in Figure 2 (magnitude and direction)?

4  In this question, you will get some practice writing down diferent current densities. Check units to make sure that your answers make sense.

Figure 1: Ininitely long wire bent into a right-angle turn with current I.

Figure 2: Hairpin wire with current I.

4.1 A solid cylindrical straight wire (with radius a) has a current I lowing down it.   If that current is uniformly distributed JUST over the outer surface of the wire  (i.e.,  none  is  lowing through the  “volume”  of  the wire (i.e., none is flowing through the “volume” of the wire; it’s all surface charge), what is the magnitude of the surface current density, K?

4.2 A DVD has been charged so that it has a ixed, constant, uniform surface electric charge density σ everywhere on its top surface.   It  is spinning with angular velocity ω about its center (which is the origin).  What is the magnitude of the surface current density K(~) at a distance r from the center?

4.3 A sphere (radius R, total charge Q uniformly distributed throughout the

volume) is spinning at angular velocity ω z(ˆ) about its center (which is at

the origin).  What is the volume current density J(r, θ, φ) at any point (r, θ, φ) in the sphere? Don’t forget to include the direction!

4.4 A very thin plastic ring (radius R) has a constant linear charge density and total charge Q. The ring spins at angular velocity ω about its center (which is at the origin). What is the current I in terms of the given quan-tities?  What is the volume current density J(y) in cylindrical coordinates? Note - since the ring is “very thin”, there will be some delta functions. I suggest writing down a formula for ρ(s; φ; z) irst. And remember that J(y) is a vector!

Disclaimer: As a non-native speaker, I sometimes use ChatGPT or Microsoft copilot to check my grammar or make some of my sentences clearer.





站长地图