代做Statistics for HDS: Formative Assessment代写留学生R语言

- 首页 >> Web

Statistics for HDS: Formative Assessment

Guidance (which will appear on the Part One assessment at the end of the module): You should not use R (or other statistical software) for this assess- ment, except as a very basic calculator to add or multiply numbers or calculate logs and exponentials.  Marks are available for partially correct answers.  Always show your working when performing calculations, so that the markers can see how much you have understood.

The 80th, 90th, 95th, 97.5th, 99th and 99.9th centiles of a standard normal dis- tribution and of a chi-square distribution with 1, 2, 3, 4 and 5 degrees of freedom (df) are given in the following table.

1.  Vitamin D plays an important role in the absorption of calcium in the in- testine.  In a study of the association between calcium and vitamin D, the levels of calcium and vitamin D were measured in the blood serum of 952 healthy men. The mean calcium level in the sample was 2.347 mmol/L and the mean vitamin D level was 82.91 nmol/L. Using a linear regression model, the calcium level (Y) was regressed on vitamin D level (X). This  model assumes that

Y ~ Normal(Q + βX; σ2).

The maximum likelihood estimate of  (Q; β) was calculated to be  (αˆ; βˆ)  =

(2.058; 0.00348) and the repeated sampling variance matrix was

(a)  Calculate the maximum likelihood estimate of the mean level of calcium in people whose vitamin D level is 70 nmol/L.

(b)  Calculate the standard error associated with this maximum likelihood estimate.

(c)  Calculate a 90% Wald confidence interval for the mean level of calcium in people whose vitamin D level is 70 nmol/L.

Note: Iam asking you here for the Wald interval. I know that in Lecture 9 (on Linear Regression) you were shown how to calculate confidence intervals for Q and β based on t-distributions, but I am not asking you to do that here.  I want to test your understanding of how to calculate Wald intervals.

(d)  Using a Wald test, test the null hypothesis that β = 0 versus the alter- native hypothesis that β ≠ 0.  Show your working carefully.

Note: I know that in Lecture 9 (on Linear Regression) you were shown how to perform hypothesis tests based on t-distributions, but I am not asking you to do that here.  I want you to use a  Wald test, i.e. a test based on the normal approximation. I want to test your understanding of how to do that.

(e)  Apart from the Wald test and a test based on a t-distribution, suggest one other way that this null hypothesis could be tested.

2.  Suppose Xi  ~ Exponential(λ) (i = 1, . . . , n), where λ is the rate parameter.

(a)  Derive the maximum likelihood estimate λˆ of λ .

(b)  Derive the Fisher Information for λ.

(c)  Use the Fisher Information to calculate the asymptotic standard error of λˆ.

(d)  What is the asymptotic distribution of λˆ?

3.  A researcher collects data on the number of diagnoses of a particular rare disease in Country C in each of six consecutive years.  He assumes that the number of diagnoses in year i has a Poisson distribution with mean λ, which is the same for all years i = 1, . . . , 6.  He also assumes that the numbers of diagnoses in each year are independent.  The following graph shows the log likelihood function for these data.

(a)  What is the maximum likelihood estimate of λ?

(b)  Based on international data from countries with a similar demography to Country C, it is thought that the number of diagnoses per year in Country C should be around 3.5.  Perform. two diferent tests of the null hypothesis that λ = 3.5 versus the alternative hypothesis that λ ≠ 3.5. For each of these two tests, say whether you reject the null hypothesis, and report the two p-values as accurately as you can.

(c)  Using two diferent methods, calculate two 95% confidence intervals for λ .

4. In this question, Iam trusting you not to use R. Using R to help you answer this question is cheating. However, if you really struggle to answer the question, then it is better that you experiment with R and see if that helps, rather than just giving up altogether.

When comparing a continuous outcome variable in two groups, e.g. concen- tration of some type of white blood cell in treated and untreated individuals, two tests of the null hypothesis that the average outcome in the two groups is the same are the t-test and the Wilcoxon rank sum test. You will meet both of these later in the module. The following R code can be used to perform a simulation study to compare the powers of these two tests.

M  <- 100000

a  <- rep(0, M)

b  <- rep(0, M)

set. seed(15465)

for  (m  in  1:M)  {

x  <- rnorm(n=10, mean=10, sd=3)

y  <- rnorm(n=10, mean=12, sd=3)

a[m]  <- t. test(x, y)$p . value

b[m]  <- wilcox. test(x, y)$p . value

}

As you have probably guessed,t. test(x,  y)$p . value and wilcox. test(x, y)$p . value contain the p-values from the t-test and Wilcoxon test, respec- tively.

(a)  What  (one or two) lines of R code would you add to this program in order to make it report the powers of the two size-0.05 tests?

(b)  Suppose that these  powers  are  29%  for the  size-0.05 t-test  and  26% for the size-0.05 Wilcoxon test.  Explain very carefully what these two percentages mean.

(c)  Explain what would happen to these two powers if the lines

x  <- rnorm(n=10, mean=10, sd=3)

y  <- rnorm(n=10, mean=12, sd=3) in the above R code were changed to:

i.      x  <- rnorm(n=10, mean=10, sd=3) y <- rnorm(n=10, mean=15, sd=3)

ii.      x  <- rnorm(n=10, mean=10, sd=5) y <- rnorm(n=10, mean=12, sd=5)

iii.      x  <- rnorm(n=10, mean=10, sd=3) y <- rnorm(n=10, mean=10, sd=3)





站长地图