代做CENV6175 COASTAL AND MARITIME ENGINEERING SEMESTER 1 ASSESSMENT PAPER 2023/24代做迭代

- 首页 >> Algorithm 算法

CENV6175W1

COASTAL AND MARITIME ENGINEERING

SEMESTER 1 ASSESSMENT PAPER 2023/24

Section A

A1. A breakwater built from vertical concrete caissons has an entrance of width LB  = 30 m with a water depth of

3.57 m, Fig. A1. Both sides of the breakwater at the entrance are vertical walls, the shipping channel runs in the centre line of the entrance. The wave periods at the harbour range from 4 to 9 seconds.

a)     At which two wave periods can standing waves at the entrance occur?

b)     Which wave period is more critical and why?

Fig. A1: Harbour entrance

[ 9 ]

A2. The wave breaking criterion given in most textbooks states that

waves break when the ratio of wave height H and water depth d reaches a value of H / d = 0.78. Describe briefly the assumption underlying this value, using sketches. Give two points of critique of this condition for wave breaking. [ 8 ]

A3. Name and briefly describe two types of sustainable solutions for coastal structures (use sketches where appropriate).     [ 8 ]

SECTION B

B1. Sustainability

(i) Name and briefly describe two different technologies for electricity generation from tidal currents. Give typical efficiencies and one advantage and one disadvantage for each.    [ 6 ]

(ii) At a beach, you can identify a rip current by the fact that the breaking waves practically disappear over a width of several meters. Outside of the rip current, the breaking wave height is around 1 m.

a) Explain the rip current generation mechanism briefly, using sketches.   [ 4 ]

b) Why do the waves in the rip current disappear? Name and describe the effect briefly.   [ 5 ]

c) Estimate (using calculations, assume shallow water conditions) the velocity of the rip current. Can you swim  against the current  towards the shoreline? Give evidence for your answer.   [ 7 ]

d) If you are caught in a rip current, what is your survival strategy?   [ 3 ]

B2. Tsunami Engineering:

(i)     Briefly describe (with sketches) three different mechanisms of tsunami generation. [ 9 ]

(ii)    A tsunami wave breaking near the shoreline can be

compared to a bore, with a constant horizontal velocity v0 , Fig. B2.1.

Fig. B2.1: Idealised tsunami in shallow water

a) Use a momentum analysis with a moving reference frame to determine the velocity of the  bore as a function of the depth d and the bore height H. Comment.   [ 8 ]

b) The tsunami wave travels upstream in a water depth of d = 1 m. Assume the height of the bore to be H = 0.678 m. Is this the maximum height the tsunami wave in the river can have? Analyse the situation, using moments over the seabed to determine whether or not 0.678 m is the critical height.   [ 8 ]

B3. Wave forces on structures

Fig.  B3.1  shows a vertical seawall with the minimum (MLWS) and maximum (MHWS) water levels. The maximum offshore  wave height is H0 = 1.0 m, the predominant wave period for all wave heights is T = 8 seconds. The density of the seawater is ρsw = 1030 kg/m3 .

Fig. B3.1: Vertical seawall

Determine:

(i)     The type and magnitude of pressures generated by the waves at MHWS. Give the vertical

distribution of pressures. Use Eqs. B3.1 and B3.2.  Hint: tanh(x) and cosh(x) are listed in Table 1 (p 6).  [ 10 ]

(ii)    The type and magnitude of the maximum pressure generated by a breaking wave. Use two iteration steps to approximate the critical water depth. Hint: start with the assumption that the  incident wave height is equal to the height determined for a depth of 2.5 m. Use Eq. B3.3 and Table 3.1.   [ 10 ]

(iii)    The maximum pressure at MLWS.  Use  Eq.  B3.3 and Table 3.1.   [ 5 ]






站长地图